【題目】如圖,已知 △ABC 的三個(gè)頂點(diǎn)的坐標(biāo)分別為 A(-2,3)、B(-6,0)、C(-1,0).
(1)將△ABC繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn) 90°. 畫出圖形,直接寫出點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo);
(2)請直接寫出:以 A、B、C 為頂點(diǎn)的平行四邊形的第四個(gè)頂點(diǎn) D 的坐標(biāo).
【答案】(1)圖形見解析;點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo)為(0,-6)(2)(-7,3),(-5,-3),(3,3)
【解析】
(1)根據(jù)網(wǎng)格結(jié)構(gòu)找出點(diǎn)A、B、C繞坐標(biāo)原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°對應(yīng)點(diǎn)A′、B′、C′的位置,然后順次連接即可,再根據(jù)平面直角坐標(biāo)系寫出點(diǎn)B′的坐標(biāo);
(2)根據(jù)平行四邊形的對邊平行且相等,分AB、BC、AC是對角線三種情況分別寫出即可.
(1)△ABC旋轉(zhuǎn)后的△A′B′C′如圖所示,
點(diǎn)B的對應(yīng)點(diǎn)的坐標(biāo)為(0,-6);
(2)若AB是對角線,則點(diǎn)D(-7,3),
若BC是對角線,則點(diǎn)D(-5,-3),
若AC是對角線,則點(diǎn)D(3,3).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程(x+1)(x﹣3)+m=0(m<0)的兩根為a和b,且a<b,用“<”連接﹣1、3、a、b的大小關(guān)系為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知長方形硬紙板ABCD的長BC為40cm,寬CD為30cm,按如圖所示剪掉2個(gè)小正方形和2個(gè)小長方形(即圖中陰影部分),將剩余部分折成一個(gè)有蓋的長方體盒子,
設(shè)剪掉的小正方形邊長為xcm.(紙板的厚度忽略不計(jì))
(1)填空:EF= .cm,GH= .cm;(用含x的代數(shù)式表示)
(2)若折成的長方體盒子的表面積為950cm2,求該長方體盒子的體積
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知如圖,在矩形ABCD中,AB=6cm,BC=8cm,對角線AC,BD交于點(diǎn)0.點(diǎn)P從點(diǎn)A出發(fā),沿AD方向向終點(diǎn)D勻速運(yùn)動(dòng),速度為cm/s;同時(shí),點(diǎn)Q從點(diǎn)D出發(fā),沿DC方向向終點(diǎn)C勻速運(yùn)動(dòng),速度為1cm/s;當(dāng)一個(gè)點(diǎn)停止運(yùn)動(dòng)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng).連接PO并延長,交BC于點(diǎn)E,過點(diǎn)Q作QF//AC,交BD于點(diǎn)F.設(shè)運(yùn)動(dòng)時(shí)間為t(s),解答下列問題:
(1)當(dāng)t為何值時(shí),△AOP是等腰三角形?
(2)設(shè)五邊形OECQF的面積為S(cm2),試確定S與t的函數(shù)關(guān)系式;
(3)在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使S五邊形S五邊形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,請說明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,BC=6,AC=8.點(diǎn)E與點(diǎn)B在AC的同側(cè),且AE⊥AC.
(1)如圖1,點(diǎn)E不與點(diǎn)A重合,連結(jié)CE交AB于點(diǎn)P.設(shè)AE=x,AP=y,求y關(guān)于x的函數(shù)解析式;
(2)是否存在點(diǎn)E,使△PAE與△ABC相似,若存在,求AE的長;若不存在,說明理由;
(3)如圖2,過點(diǎn)B作BD⊥AE,垂足為D.將以點(diǎn)E為圓心,ED為半徑的圓記為⊙E.若點(diǎn)C到⊙E上點(diǎn)的距離的最小值為8,求⊙E的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+x+6及一次函數(shù)y=x+m,將該二次函數(shù)在x軸上方的圖象沿x軸翻折到x軸下方,圖象的其余部分不變,得到一個(gè)新圖象(如圖所示),當(dāng)直線y=x+m與這個(gè)新圖象有四個(gè)交點(diǎn)時(shí),m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市一月份的營業(yè)額為200萬元,一月、二月、三月的營業(yè)額共1000萬元,如果平均每月增長率為,則由題意列方程應(yīng)為____________________________ 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的小正方形網(wǎng)格中,點(diǎn)A、B、C、D都在這些小正方形的頂點(diǎn)上,連結(jié)CD與AB相交于點(diǎn)P,則tan∠APD的值是( )
A. 2 B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)戶生產(chǎn)經(jīng)銷一種農(nóng)副產(chǎn)品,已知這種產(chǎn)品的成本價(jià)為20元/千克.市場調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷售量w (千克)與銷售價(jià)x (元/千克)有如下關(guān)系:w=﹣2x+80.設(shè)這種產(chǎn)品每天的銷售利潤為y (元).
(1)求y與x之間的函數(shù)關(guān)系式,自變量x的取值范圍;
(2)當(dāng)銷售價(jià)定為多少元時(shí),每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com