【題目】2016年2月18日韓國海軍海警在朝鮮半島東部海域?qū)嵤┞?lián)合演習(xí),在返回濟(jì)州島軍事基地途中,韓國海軍UH﹣60直升機(jī)在距海平面垂直高度為300米的點(diǎn)C處測得濟(jì)州一小島的西端點(diǎn)A的俯角為60°,然后沿著平行于AB的方向水平飛行了3500米,在點(diǎn)D測得這小島的東端點(diǎn)B的俯角為45°,求這個濟(jì)州小島東西兩端BA的距離(結(jié)果精確到1米,參考數(shù)據(jù): ≈1.732, ≈1.414)

【答案】解:過點(diǎn)A作AE⊥CD于點(diǎn)E,過點(diǎn)B作BF⊥CD于點(diǎn)F,

∵AB∥CD,
∴∠AEF=∠EFB=∠ABF=90°,
∴四邊形ABFE為矩形.
∴AB=EF,AE=BF.
由題意可知:AE=BF=300米,CD=3500米.
在Rt△AEC中,∠C=60°,AE=300米.
∴CE= =100 (米),
在Rt△BFD中,∠BDF=45°,BF=300.
∴DF=BF=300(米).
∴AB=EF=CD+DF﹣CE=3500+300﹣100 ≈3800﹣100×1.73≈3627(米),
答:島嶼兩端A、B的距離為3627米.
【解析】首先過點(diǎn)A作AE⊥CD于點(diǎn)E,過點(diǎn)B作BF⊥CD于點(diǎn)F,易得四邊形ABFE為矩形,根據(jù)矩形的性質(zhì),可得AB=EF,AE=BF.由題意可知:AE=BF=100米,CD=3500米,然后分別在Rt△AEC與Rt△BFD中,利用三角函數(shù)即可求得CE與DF的長,繼而求得島嶼兩端A、B的距離.
【考點(diǎn)精析】關(guān)于本題考查的關(guān)于方向角問題,需要了解指北或指南方向線與目標(biāo)方向 線所成的小于90°的水平角,叫做方向角才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了提高服務(wù)質(zhì)量,某賓館決定對甲、乙兩種套房進(jìn)行星級提升,已知甲種套房提升費(fèi)用比乙種套房提升費(fèi)用少3萬元,如果提升相同數(shù)量的套房,甲種套房費(fèi)用為625萬元,乙種套房費(fèi)用為700萬元.
(1)甲、乙兩種套房每套提升費(fèi)用各多少萬元?
(2)如果需要甲、乙兩種套房共80套,市政府籌資金不少于2090萬元,但不超過2096萬元,且所籌資金全部用于甲、乙種套房星級提升,市政府對兩種套房的提升有幾種方案?哪一種方案的提升費(fèi)用最少?
(3)在(2)的條件下,根據(jù)市場調(diào)查,每套乙種套房的提升費(fèi)用不會改變,每套甲種套房提升費(fèi)用將會提高a萬元(a>0),市政府如何確定方案才能使費(fèi)用最少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:﹣22+ -2cos60°+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知y=﹣x+m(m>4)過動點(diǎn)A(m,0),并與反比例函數(shù)y= 的圖象交于B、C兩點(diǎn)(點(diǎn)B在點(diǎn)C的左邊),以O(shè)A為直徑作反比例函數(shù)y= 的圖象相交的半圓,圓心為P,過點(diǎn)B作x軸的垂線,垂足為E,并于半圓P交于點(diǎn)D.
(1)當(dāng)m=5時,求B、C兩點(diǎn)的坐標(biāo).
(2)求證:無論m取何值,線段DE的長始終為定值.
(3)記點(diǎn)C關(guān)于直線DE的對稱點(diǎn)為C′,當(dāng)四邊形CDC′E為菱形時,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】景新中學(xué)為了進(jìn)一步豐富學(xué)生的課外閱讀,欲增購一些課外書,為此對該校一部分學(xué)生進(jìn)行了一次“你最喜歡的書籍”問卷調(diào)查(每人只選一項(xiàng)).根據(jù)收集到的數(shù)據(jù),繪制成如下統(tǒng)計(jì)圖(不完整):請根據(jù)圖中提供的信息,完成下列問題:
(1)在這次問卷調(diào)查中,喜歡“科普書籍”出現(xiàn)的頻率為;
(2)在扇形統(tǒng)計(jì)圖中,喜歡“體育書籍”的所占的圓心角度數(shù)為;
(3)如果全校共有學(xué)生1500名,請估計(jì)該校最喜歡“科普書籍”的學(xué)生約有人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中AB=3,BC=4,∠B=90°,點(diǎn)B、C在兩坐標(biāo)軸上滑動.當(dāng)邊AC⊥x軸時,點(diǎn)A剛好在雙曲線 上,此時下列結(jié)論不正確的是( )

A.點(diǎn)B為(0,
B.AC邊的高為
C.雙曲線為
D.此時點(diǎn)A與點(diǎn)O距離最大

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,以對角線BD為邊作菱形BDFE,使B,C,E三點(diǎn)在同一直線上,連接BF,交CD與點(diǎn)G.
(1)求證:CG=CE;
(2)若正方形邊長為4,求菱形BDFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小軒從如圖所示的二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,觀察得出了下面五條信息: ①ab>0;②a+b+c<0;③b+2c>0;④a﹣2b+4c>0;⑤
你認(rèn)為其中正確信息的個數(shù)有(

A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線y= 與雙曲線y= (k>0,x>0)交于點(diǎn)A,將直線y= 向上平移4個單位長度后,與y軸交于點(diǎn)C,與雙曲線y= (k>0,x>0)交于點(diǎn)B,若OA=3BC,則k的值為( 。

A.3
B.6
C.
D.

查看答案和解析>>

同步練習(xí)冊答案