如圖,一次函數(shù)y=-4x-4的圖象與x軸、y軸分別交于A、C兩點,拋物線y=
4
3
x2+bx+c的圖象經(jīng)過A、C兩點,且與x軸交于點B.
(1)求拋物線的函數(shù)表達(dá)式;
(2)設(shè)拋物線的頂點為D,求四邊形ABDC的面積;
(3)作直線MN平行于x軸,分別交線段AC、BC于點M、N.問在x軸上是否存在點P,使得△PMN是等腰直角三角形?如果存在,求出所有滿足條件的P點的坐標(biāo);如果不存在,請說明理由.
(1)∵一次函數(shù)y=-4x-4的圖象與x軸、y軸分別交于A、C兩點,
∴A(-1,0)C(0,-4),
把A(-1,0)C(0,-4)代入y=
4
3
x2+bx+c得
4
3
-b+c=0
c=-4
,解得
b=-
8
3
c=-4
,
∴y=
4
3
x2-
8
3
x-4;

(2)∵y=
4
3
x2-
8
3
x-4=
4
3
(x-1)2-
16
3
,
∴頂點為D(1,-
16
3
),
設(shè)直線DC交x軸于點E,
由D(1,-
16
3
)C(0,-4),
易求直線CD的解析式為y=-
4
3
x-4,
易求E(-3,0),B(3,0),
S△EDB=
1
2
×6×
16
3
=16,
S△ECA=
1
2
×2×4=4,
S四邊形ABDC=S△EDB-S△ECA=12;
(3)設(shè)M、N的縱坐標(biāo)為a,
由B和C點的坐標(biāo)可知BC所在直線的解析式為:y=
4
3
x-4
,
則M(
-4-a
4
,a),N(
3a+12
4
,a),
①當(dāng)∠PMN=90°,MN=a+4,PM=-a,因為是等腰直角三角形,則-a=a+4則a=-2則P的橫坐標(biāo)為-
1
2
,
即P點坐標(biāo)為(-
1
2
,0);
②當(dāng)∠PNM=90°,PN=MN,同上,a=-2,則P的橫坐標(biāo)為
3×(-2)+12
4
=
3
2

即P點坐標(biāo)為(
3
2
,0);
③當(dāng)∠MPN=90°,作MN的中點Q,連接PQ,則PQ=-a,
又PM=PN,∴PQ⊥MN,則MN=2PQ,即:a+4=-2a,
解得:a=-
4
3

點P的橫坐標(biāo)為:
-4-a+3a+12
4
2
=
a+4
4
=
2
3
,
即P點的坐標(biāo)為(
2
3
,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,平面直角坐標(biāo)系中,四邊形OABC是直角梯形,ABOC,OA=5,AB=10,OC=12,拋物線y=ax2+bx經(jīng)過點B、C.
(1)求拋物線的函數(shù)表達(dá)式;
(2)一動點P從點A出發(fā),沿AC以每秒2個單位長度的速度向點C運(yùn)動,同時動點Q從點C出發(fā),沿CO以每秒1個單位長度的速度向點O運(yùn)動,當(dāng)點P運(yùn)動到點C時,兩點同時停止運(yùn)動,設(shè)運(yùn)動時間為t秒,當(dāng)t為何值時,△PQC是直角三角形?
(3)點M在拋物線上,點N在拋物線對稱軸上,是否存在這樣的點M與點N,使以M、N、A、C為頂點的四邊形是平行四邊形?若存在,請直接寫出點M與點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=
1
2
x2+mx+n交x軸于A、B兩點,交y軸于點C,點P是它的頂點,點A的坐標(biāo)是(1,0),點B的坐標(biāo)是(-3,0).
(1)求m、n的值;
(2)求直線PC的解析式.
[溫馨提示:拋物線y=ax2+bx+c(a≠0)的頂點坐標(biāo)為(-
b
2a
,
4ac-b2
4a
)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

數(shù)學(xué)課上,老師提出:
如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,A點的坐標(biāo)為(1,0),點B在x軸上,且在點A的右側(cè),AB=OA,過點A和B作x軸的垂線,分別交二次函數(shù)y=x2的圖象于點C和D,直線OC交BD于點M,直線CD交y軸于點H,記點C、D的橫坐標(biāo)分別為xC、xD,點H的縱坐標(biāo)為yH
同學(xué)發(fā)現(xiàn)兩個結(jié)論:
①S△CMD:S梯形ABMC=2:3 ②數(shù)值相等關(guān)系:xC•xD=-yH
(1)請你驗證結(jié)論①和結(jié)論②成立;
(2)請你研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,其他條件不變,結(jié)論①是否仍成立(請說明理由);
(3)進(jìn)一步研究:如果上述框中的條件“A的坐標(biāo)(1,0)”改為“A的坐標(biāo)(t,0)(t>0)”,又將條件“y=x2”改為“y=ax2(a>0)”,其他條件不變,那么xC、xD與yH有怎樣的數(shù)值關(guān)系?(寫出結(jié)果并說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

△ABC中,∠A,∠B,∠C的對邊分別為a,b,c,拋物線y=x2-2ax+b2交x軸于兩點M,N,交y軸于點P,其中M的坐標(biāo)是(a+c,0).
(1)求證:△ABC是直角三角形;
(2)若S△MNP=3S△NOP,①求cosC的值;②判斷△ABC的三邊長能否取一組適當(dāng)?shù)闹担谷切蜯ND(D為拋物線的頂點)是等腰直角三角形?如能,請求出這組值;如不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示的拋物線是二次函數(shù)y=ax2-x+a2-1的圖象,那么a的值是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

某公司生產(chǎn)某種產(chǎn)品,每件產(chǎn)品成本是3元,售價是4元,年銷售量為10萬件.為了獲得更好的效益,公司準(zhǔn)備那出一定的資金做廣告.根據(jù)經(jīng)驗,每年投入廣告費(fèi)為x(萬元)時,產(chǎn)品的年銷售量將是原銷售量的y倍,且y=-
x2
10
+
7
10
x+
7
10
.如果把利潤看作是銷售額減去成本費(fèi)和廣告費(fèi),試求當(dāng)年利潤為16萬元時,廣告費(fèi)x為多少萬元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形OABC的邊OC,OA分別與x軸,y軸重合,點B的坐標(biāo)是(
3
,1),點D是AB邊上一個動點(與點A不重合),沿OD將△OAD翻折,點A落在點P處.
(1)若點P在一次函數(shù)y=2x-1的圖象上,求點P的坐標(biāo);
(2)若點P在拋物線y=ax2圖象上,并滿足△PCB是等腰三角形,求該拋物線解析式;
(3)當(dāng)線段OD與PC所在直線垂直時,在PC所在直線上作出一點M,使DM+BM最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,直線l經(jīng)過點M(3,0),且平行于y軸,與拋物線y=ax2交于點N,若S△OMN=9,則a的值是( 。
A.
2
3
B.-
2
3
C.
1
3
D.-
1
3

查看答案和解析>>

同步練習(xí)冊答案