【題目】如圖,菱形ABCD的邊長為4cm,∠A=60°,弧BD是以點A為圓心,AB長為半徑的弧,弧CD是以點B為圓心,BC長為半徑的弧,則陰影部分的面積為( )
A. 2cm2B. 4cm2C. 4cm2D. πcm2
【答案】B
【解析】
連接BD,判斷出△ABD是等邊三角形,根據(jù)等邊三角形的性質可得∠ABD=60°,再求出∠CBD=60°,DB=BC=AD,從而確定S扇形BDC=S扇形ABD,然后求出陰影部分的面積=S扇形BDC-(S扇形ABD-S△ABD)=S△ABD,計算即可得解.
解:如圖,連接BD,
∵四邊形ABCD是菱形,
∴AB=AD=BC,
∵∠A=60°,
∴△ABD是等邊三角形,
∴∠ADB=60°,AD=DB=BC=4
又∵菱形的對邊AD∥BC,
∴∠CBD=∠ADB=60°,
∴S扇形BDC=S扇形ABD
∴S陰影=S扇形BDC-(S扇形ABD-S△ABD)=S△ABD==4cm2.
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,將點P繞點T(t,0)(1>0)旋轉180°得到點Q,則稱點Q為點P的“發(fā)展點”.
(1)當t=2時,點(0,0)的“發(fā)展點”坐標為______,點(-1,-1)的“發(fā)展點”坐標為______.
(2)若t>3,則點(3,4)的“發(fā)展點”的橫坐標為______(用含t的代數(shù)式表示).
(3)若點P在直線y=2x+6上,其“發(fā)展點”Q在直線y=2x-8上,求點T的坐標.
(4)點P(3,3)在拋物線y=-x2+k上,點M在這條拋物線上,點Q為點P的“發(fā)展點”.若△PMQ是以點M為直角頂點的等腰直角三角形,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知正方形,P為射線上的一點,以為邊作正方形,使點F在線段的延長線上,連接.
(1)如圖1,若點P在線段的延長線上,判斷的形狀,并說明理由;
(2)如圖2,若點P在線段上
①若點P是線段的中點,判斷的形狀,并說明理由;
②當時,請直接寫出的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學綜合實踐課上,老師提出問題:如圖,有一張長為4dm,寬為3dm的長方形紙板,在紙板四個角剪去四個相同的小正方形,然后把四邊折起來(實線為剪裁線,虛線為折疊線),做成一個無蓋的長方體盒子,問小正方形的邊長為多少時,盒子的體積最大?為了解決這個問題,小明同學根據(jù)學習函數(shù)的經(jīng)驗,進行了如下的探究:
(1)設小正方形的邊長為xdm,長方體體積為ydm3,根據(jù)長方體的體積公式,可以得到y與x的函數(shù)關系式是 ,其中自變量x的取值范圍是 .
(2)列出y與x的幾組對應值如下表:
x/dm | … | 1 | … | |||||||||
y/dm3 | … | 1.3 | 2.2 | 2.7 | 3.0 | 2.8 | 2.5 | 1.5 | 0.9 | … |
(注:補全表格,保留1位小數(shù)點)
(3)如圖,請在平面直角坐標系中描出以補全后表格中各對對應值為坐標的點,畫出該函數(shù)圖象;
(4)結合函數(shù)圖象回答:當小正方形的邊長約為 dm時,無蓋長方體盒子的體積最大,最大值約為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我市304國道通遼至霍林郭勒段在修建過程中經(jīng)過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結果取整數(shù),參考數(shù)據(jù)≈1.732)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸的負半軸相交于點,將拋物線平移得到拋物線,與相交于點,直線交于點,且.
(1)求點的坐標;
(2)寫出一種將拋物線平移到拋物線的方法;
(3)在軸上找點,使得的值最小,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為矩形,AB=4cm,AD=3cm,動點M,N分別從點D,B同時出發(fā),都以1cm/s的速度運動.點M沿DA向終點A運動,點N沿BC向終點C運動.過點N作NP⊥BC,交AC于點O,連接MP.已知動點運動了ts(0<t<3).
(1)當t為多少時,PM∥AB?
(2)若四邊形CDMP的面積為S,試求S與t的函數(shù)關系式.
(3)在運動過程中,是否存在某一時刻t使四邊形CDMP面積與四邊形ABCD面積比為3:8?若存在,請求出t的值;若不存在,請說明理由.
(4)在點M,N運動過程中,△MPA能否成為一個等腰三角形?若能,求出所有可能的t值;若不能,試說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com