【題目】閱讀下列材料
計(jì)算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,則:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=
在上面的問題中,用一個(gè)字母代表式子中的某一部分,能達(dá)到簡(jiǎn)化計(jì)算的目的,這種思想方法叫做“換元法”,請(qǐng)用“換元法”解決下列問題:
(1)計(jì)算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)
(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4
(3)解方程:(x2+4x+1)(x2+4x+3)=3
【答案】(1);(2)(a2﹣5a+5)2;(3)x1=0,x2=﹣4,x3=x4=﹣2
【解析】
(1)仿照材料內(nèi)容,令+=t代入原式計(jì)算.
(2)觀察式子找相同部分進(jìn)行換元,令a2﹣5a=t代入原式進(jìn)行因式分解,最后要記得把t換為a.
(3)觀察式子找相同部分進(jìn)行換元,令x2+4x=t代入原方程,即得到關(guān)于t的一元二次方程,得到t的兩個(gè)解后要代回去求出4個(gè)x的解.
(1)令+=t,則:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=
(2)令a2﹣5a=t,則:
原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2
(3)令x2+4x=t,則原方程轉(zhuǎn)化為:
(t+1)(t+3)=3
t2+4t+3=3
t(t+4)=0
∴t1=0,t2=﹣4
當(dāng)x2+4x=0時(shí),
x(x+4)=0
解得:x1=0,x2=﹣4
當(dāng)x2+4x=﹣4時(shí),
x2+4x+4=0
(x+2)2=0
解得:x3=x4=﹣2
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(-1,0)、B(3,0)、C(0,3)三點(diǎn).
(1)求拋物線相應(yīng)的函數(shù)表達(dá)式;
(2)點(diǎn)M是線段BC上的點(diǎn)(不與B、C重合),過M作MN∥y軸交拋物線于N,連接NB.若點(diǎn)M的橫坐標(biāo)為t,是否存在t,使MN的長(zhǎng)最大?若存在,求出sin∠MBN的值;若不存在,請(qǐng)說明理由;
(3)若對(duì)一切x≥0均有ax2+bx+c≤mx-m+13成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線y=與x軸交于A,C(A在C的左側(cè)),點(diǎn)B在拋物線上,其橫坐標(biāo)為1,連接BC,BO,點(diǎn)F為OB中點(diǎn).
(1)求直線BC的函數(shù)表達(dá)式;
(2)若點(diǎn)D為拋物線第四象限上的一個(gè)動(dòng)點(diǎn),連接BD,CD,點(diǎn)E為x軸上一動(dòng)點(diǎn),當(dāng)△BCD的面積的最大時(shí),求點(diǎn)D的坐標(biāo),及|FE﹣DE|的最大值;
(3)如圖2,若點(diǎn)G與點(diǎn)B關(guān)于拋物線對(duì)稱軸對(duì)稱,直線BG與y軸交于點(diǎn)M,點(diǎn)N是線段BG上的一動(dòng)點(diǎn),連接NF,MF,當(dāng)∠NFO=3∠BNF時(shí),連接CN,將直線BO繞點(diǎn)O旋轉(zhuǎn),記旋轉(zhuǎn)中的直線BO為B′O,直線B′O與直線CN交于點(diǎn)Q,當(dāng)△OCQ為等腰三角形時(shí),求點(diǎn)Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在等腰直角三角形中,,,D,E分別在上,且,此時(shí)有,.
(1)如圖①中 繞點(diǎn)A旋轉(zhuǎn)至如圖②時(shí)上述結(jié)論是否仍然成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
(2)將圖①中的繞點(diǎn)A旋轉(zhuǎn)至DE與直線AC垂直,直線BD交CE于點(diǎn)F,若,,請(qǐng)畫出圖形,并求出BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“驢友”小明分三次從M地出發(fā)沿著不同的線路線,B線,C線去N地在每條線路上行進(jìn)的方式都分為穿越叢林、涉水行走和攀登這三種他涉水行走4小時(shí)的路程與攀登6小時(shí)的路程相等線、C線路程相等,都比A線路程多,A線總時(shí)間等于C線總時(shí)間的,他用了3小時(shí)穿越叢林、2小時(shí)涉水行走和2小時(shí)攀登走完A線,在B線中穿越叢林、涉水行走和攀登所用時(shí)間分別比A線上升了,,,若他用了x小時(shí)穿越叢林、y小時(shí)涉水行走和z小時(shí)攀登走完C線,且x,y,z都為正整數(shù),則______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市304國道通遼至霍林郭勒段在修建過程中經(jīng)過一座山峰,如圖所示,其中山腳A、C兩地海拔高度約為1000米,山頂B處的海拔高度約為1400米,由B處望山腳A處的俯角為30°,由B處望山腳C處的俯角為45°,若在A、C兩地間打通一隧道,求隧道最短為多少米(結(jié)果取整數(shù),參考數(shù)據(jù)≈1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個(gè)直角三角形紙片OAB,其中∠AOB=90°,OA=2,OB=4.如圖,將該紙片放置在平面直角坐標(biāo)系中,折疊該紙片,折痕與邊OB交于點(diǎn)C,與邊AB交于點(diǎn)D.
(1)若折疊后使點(diǎn)B與點(diǎn)A重合,求點(diǎn)C的坐標(biāo);
(2)若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B′,設(shè)OB′=x,OC=y,試寫出y關(guān)于x的函數(shù)解析式,并確定y的取值范圍;
(3)若折疊后點(diǎn)B落在邊OA上的點(diǎn)為B′,且使B′D//OB,求此時(shí)點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是邊長(zhǎng)為2的正方形ABCD的中心.函數(shù)y=(x﹣h)2的圖象與正方形ABCD有公共點(diǎn),則h的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)D是BC中點(diǎn),∠EDF兩邊分別交線段AB于點(diǎn)E,交線段AC于點(diǎn)F,且∠EDF+∠BAC=180°
(1)如圖1,當(dāng)∠EDF=90°時(shí),求證:BE=AF;
(2)如圖2,當(dāng)∠EDF=60°時(shí),求證:AE+AF=AD;
(3)如圖3,在(2)的條件下,連接EF并延長(zhǎng)EF至點(diǎn)G,使FG=EF,連接CG,若BE=5,CF=4,求CG的長(zhǎng)度.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com