【題目】如圖△ADF和△BCE中,∠A=∠B,點D、E、F、C在同﹣直線上,有如下三個關(guān)系式:①AD=BC;②DE=CF;③BE∥AF。
(1)請用其中兩個關(guān)系式作為條件,另一個作為結(jié)論,寫出所有你認為正確的命題.(用序號寫出命題書寫形式,如:如果①、②,那么③)
(2)選擇(1)中你寫出的一個命題,說明它正確的理由。
【答案】(1)如果①,③,那么②;如果②,③,那么①.(2)對于“如果①,③,那么②”
【解析】試題分析:(1)本題主要考查全等三角形的判定,能不能成立,就看作為條件的關(guān)系式能不能證明△ADF≌△BCE,從而得到結(jié)論.
(2)對于“如果①,③,那么②”進行證明,根據(jù)平行線的性質(zhì)得到∠AFD=∠BEC,因為AD=BC,∠A=∠B,利用AAS判定△ADF≌△BCE,得到DF=CE,即得到DE=CF.
解:(1)如果①,③,那么②;如果②,③,那么①.
(2)對于“如果①,③,那么②”證明如下:
∵BE∥AF,
∴∠AFD=∠BEC.
∵AD=BC,∠A=∠B,
∴△ADF≌△BCE.
∴DF=CE.
∴DF﹣EF=CE﹣EF.
即DE=CF.
對于“如果②,③,那么①”證明如下:
∵BE∥AF,
∴∠AFD=∠BEC.
∵DE=CF,
∴DE+EF=CF+EF.
即DF=CE.
∵∠A=∠B,
∴△ADF≌△BCE.
∴AD=BC.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點P(﹣2,3)關(guān)于x軸的對稱點在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠C=90°,∠B=30°,O為AB邊中點,將△ABC繞點O逆時針旋轉(zhuǎn)60°至△EDA位置,連接CD.
(1)求證:OD⊥BC;
(2)求證:四邊形AODC為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】要從甲、乙兩名運動員中選出一名參加“2016里約奧運會”100m比賽,對這兩名運動員進行了10次測試,經(jīng)過數(shù)據(jù)分析,甲、乙兩名運動員的平均成績均為10.05(s),甲的方差為0.024(s2),乙的方差為0.008(s2),則這10次測試成績比較穩(wěn)定的是 運動員.(填“甲”或“乙”)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,∠ABC=90°,利用直尺和圓規(guī),根據(jù)要求作圖(不寫作法,保留作圖痕跡),并解決下面的問題.
(1)作AC的垂直平分線,分別交AC、BC于點D、E;
(2)若AB=12,BE=5,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一張長方形紙片,剪下一個正方形,剩下一個長方形,稱為第一次操作;在剩下的長方形紙片中再剪下一個正方形,剩下一個長方形,稱為第二次操作;…;若在第n次操作后,剩下的長方形為正方形,則稱原長方形為n階奇異長方形.如圖1,長方形ABCD中,若AB=2,BC=6,則稱長方形ABCD為2階奇異長方形.
(1)判斷與操作:
如圖2,長方形ABCD長為10,寬為4,它是奇異長方形,請寫出它是 階奇異長方形,并在圖中畫出裁剪線;
(2)探究與計算:
已知長方形ABCD的一邊長為30,另一邊長為a (a<30),且它是3階奇異長方形,請畫出所有可能的長方形ABCD及裁剪線的示意圖,并求出相應(yīng)的a值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l上有一點O,點A、B同時從O出發(fā),在直線l上分別向左、向右作勻速運動,且A、B的速度比為1:2,設(shè)運動時間為ts.
(1)當(dāng)t=2s時,AB=12cm.此時,
①在直線l上畫出A、B兩點運動2秒時的位置,并回答點A運動的速度是 cm/s; 點B運動的速度是 cm/s.
②若點P為直線l上一點,且PA﹣PB=OP,求的值;
(2)在(1)的條件下,若A、B同時按原速向左運動,再經(jīng)過幾秒,OA=2OB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,BD是∠ABC平分線,DE⊥AB于E,AB=36cm,BC=24cm,S△ABC=144cm2,則DE的長是( )
A.4.8cm B.4.5cm C.4cm D.2.4cm
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com