【題目】為做好漢江防汛工作,防汛指揮部決定對一段長為2500m重點堤段利用沙石和土進(jìn)行加固加寬.專家提供的方案是:使背水坡的坡度由原來的11變?yōu)?/span>11.5,如圖,若CDBACD=4米,鉛直高DE=8米.

1)求加固加寬這一重點堤段需沙石和土方數(shù)是多少?

2)某運輸隊承包這項沙石和土的運送工程,根據(jù)施工方計劃在一定時間內(nèi)完成,按計劃工作5天后,增加了設(shè)備,工效提高到原來的1.5倍,結(jié)果提前了5天完成任務(wù),問按原計劃每天需運送沙石和土多少m3?

【答案】1)加固加寬這段長為2500m重點堤段需要沙石和土為120000m3;(2)該運輸隊原計劃每天運送沙石和土6000m3

【解析】

1)過點CCFAEF,則四邊形CDEF是矩形,CFBF=1:1.5,BF=12m,故BA=12m4m,;(2)設(shè)該運輸隊原計劃每天運送沙石和土m3,則工效提高后每天運送沙石和土1.5m3 .

1)∵DEAE=1:1,且DE=8m,∴AE=8m,

過點CCFAEF,則四邊形CDEF是矩形,∴FE=CD=4mCF=DE=8m

CFBF=1:1.5,∴BF=12m

BA=12m4m8m,

==m2

加固加寬這段長為2500m重點堤段需要沙石和土:m3

2)設(shè)該運輸隊原計劃每天運送沙石和土m3

則工效提高后每天運送沙石和土1.5m3

解得:

檢驗:經(jīng)檢驗知,是原方程的解

答:該運輸隊原計劃每天運送沙石和土6000m3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+k2+2k0有兩個實數(shù)根x1,x2

1)求實數(shù)k的取值范圍.

2)是否存在實數(shù)k,使得x1x2x12x22=﹣16成立?若存在,請求出k的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓O的半徑長為2,點A、B、C為圓O上三點,弦BC=AO,點DBC的中點,

(1)如圖,連接AC、OD,設(shè)∠OAC=α,請用α表示∠AOD;

(2)如圖,當(dāng)點B的中點時,求點AD之間的距離:

(3)如果AD的延長線與圓O交于點E,以O為圓心,AD為半徑的圓與以BC為直徑的圓相切,求弦AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,△AEF的頂點EF分別在BC、CD邊上,高AG與正方形的邊長相等,連BD分別交AE、AF于點M、N,若EG=4,GF=6,BM=,則MN的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象與y軸的交點為C,與x軸正半軸的交點為A,且tan∠ACO=

1)求二次函數(shù)的解析式;

2P為二次函數(shù)圖象的頂點,Q為其對稱軸上的一點,QC平分∠PQO,求Q點坐標(biāo);

3)是否存在實數(shù)、),當(dāng)時,y的取值范圍為?若存在,直接寫在、的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛慢車從甲地勻速行駛至乙地,一輛快車同時從乙地出發(fā)勻速行駛至甲地,兩車之間的距離y(千米)與行駛時間x(小時)的對應(yīng)關(guān)系如圖所示,下列敘述正確的是(

A. 甲乙兩地相距1200千米

B. 快車的速度是80千米小時

C. 慢車的速度是60千米小時

D. 快車到達(dá)甲地時,慢車距離乙地100千米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)隨機抽取了部分九年級男生進(jìn)行引體向上測試,整理樣本數(shù)據(jù),得到如下統(tǒng)計圖.規(guī)定:0個到1個為不合格,2個到3個為合格,4個到5個為良好,6個及以上為優(yōu)秀.

1)這次抽樣調(diào)查引體向上成績的眾數(shù)為 個,中位數(shù)為 個;

2)用適當(dāng)?shù)慕y(tǒng)計圖表示“不合格”、“合格”、“良好”、“優(yōu)秀”四個等級學(xué)生人數(shù)所占百分比;

3)該中學(xué)九年級男生共450人,試估計全校九年級男生引體向上成績優(yōu)秀的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)(操作發(fā)現(xiàn)):如圖一,在矩形ABCD中,EBC的中點,將ABE沿AE折疊后得到AFE,點F在矩形ABCD內(nèi)部,延長AFCD于點G.猜想線段GFGC的數(shù)量關(guān)系是   

2)(類比探究):如圖二,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請說明理由.

3)(應(yīng)用):如圖三,將(1)中的矩形ABCD改為正方形,邊長AB4,其它條件不變,求線段GC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線過點,,與軸相交于點.

1)求拋物線的解析式;

2)在軸正半軸上存在點,使得是等腰三角形,請求出點的坐標(biāo);

3)如圖2,點是直線上方拋物線上的一個動點.過點于點,是否存在點,使得中的某個角恰好等于2倍?若存在,請求出點的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案