精英家教網 > 初中數學 > 題目詳情

【題目】隨著經濟的快速發(fā)展,環(huán)境問題越來越受到人們的關注,某校學生會為了解節(jié)能減排、垃圾分類知識

的普及情況,隨機調查了部分學生,調查結果分為非常了解”“了解”“了解較少”“不了解四類,

并將檢查結果繪制成下面兩個統(tǒng)計圖.

(1)本次調查的學生共有__________人,估計該校1200 名學生中不了解的人數是__________人.

(2)非常了解的4 人有兩名男生, 兩名女生,若從中隨機抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.

【答案】(1)50,360;(2)

【解析】

試題分析:(1)根據圖示,可由非常了解的人數和所占的百分比直接求解總人數,然后根據求出不了解的百分比估計即可;

(2)根據題意畫出樹狀圖,然后求出總可能和一男一女的可能,再根據概率的意義求解即可.

試題解析:(1)由餅圖可知非常了解為8%,由柱形圖可知(條形圖中可知)非常了解為4人,故本次調查的學生有(人)

由餅圖可知:不了解的概率為,故1200名學生中不了解的人數為(人)

(2)樹狀圖:

由樹狀圖可知共有12種結果,抽到1男1女分別為 8種.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,ABC中,AB=AC=10,BC=16,ADBC邊上的中線且AD=6,AD上的動點,AC邊上的動點,則的最小值是( .

A.B.16C.6D.10

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某地要建造一個圓形噴水池,在水池中央垂直于水面安裝一個花形柱子OA,O恰在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個方向上沿形狀相同的拋物線路徑落下,且在過OA的任一平面上,拋物線形狀如圖(1)所示.圖(2)建立直角坐標系,水流噴出的高度y(米)與水平距離x(米)之間的關系是.請回答下列問題:

(1)柱子OA的高度是多少米?

(2)噴出的水流距水平面的最大高度是多少米?

(3)若不計其他因素,水池的半徑至少要多少米才能使噴出的水流不至于落在池外?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題探究:已知平行四邊形的面積為所在直線上一點.

如圖:當點重合時,________;

如圖,當點均不重合時,________;

如圖,當點(或)的延長線時,________.

拓展推廣:如圖,平行四邊形的面積為,分別為、延長線上兩點,連接、、、,求出圖中陰影部分的面積,并說明理由.

實踐應用:如圖是一平行四邊形綠地,分別平行于、,它們相交于點,,,,現(xiàn)進行綠地改造,在綠地內部作一個三角形區(qū)域(連接、,圖中陰影部分)種植不同的花草,求出三角形區(qū)域的面積.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,矩形ABCD的一條邊AD=8,將矩形ABCD折疊,使得頂點B落在CD邊上的P點處,已知折痕與邊BC交于點O,連結AP、OP、OA.

(1)求證:OCP∽△PDA;

(2)若OCPPDA的面積比為1:4,求邊AB的長;

(3)如圖2,擦去折痕AO、線段OP,連結BP.動點M在線段AP上(點M與點P、A不重合),動點N在線段AB的延長線上,且BN=PM,連結MNPB于點F,作MEBP于點E.探究:當點M、N在移動過程中,線段EF與線段PB有何數量關系?并說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xoy中, 一塊含60°角的三角板作如圖擺放,斜邊 ABx軸上,直角頂點Cy軸正半軸上,已知點A(-1,0).

1)請直接寫出點B、C的坐標:B , )、C , );并求經過A、B、C三點的拋物

線解析式;

2)現(xiàn)有與上述三角板完全一樣的三角板DEF(其中∠EDF=90°,∠DEF=60°),把頂點E放在線段

AB上(點E是不與AB兩點重合的動點),并使ED所在直線經過點C 此時,EF所在直線與(1)中的拋物線交于第一象限的點M

①設AE=x,當x為何值時,OCE∽△OBC;

②在①的條件下探究:拋物線的對稱軸上是否存在點P使PEM是等腰三角形,若存在,請求點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象經過點A(﹣1,0)和點B(3,0),且有最小值為﹣2.

(1)求這個函數的解析式;

(2)函數的開口方向、對稱軸;

(3)當y>0時,x的取值范圍.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某體育看臺側面的示意圖如圖所示,觀眾區(qū)AC的坡度i12,頂端C離水平地面AB的高度為10m,從頂棚的D處看E處的仰角α18°30′,豎直的立桿上C、D兩點間的距離為4m,E處到觀眾區(qū)底端A處的水平距離AF3m

求:(1)觀眾區(qū)的水平寬度AB

2)頂棚的E處離地面的高度EF.(sin18°30′≈0.32,tanl8°30′≈0.33,結果精確到0.1m

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,CB=8,AD是△ABC的角平分線,過A、C、D三點的圓與斜邊AB交于點E,連接DE。

(1)求證:AC=AE;

(2)求△ACD外接圓的直徑。

查看答案和解析>>

同步練習冊答案