【題目】如圖,在Rt△ABC中,∠C=90°,以頂點(diǎn)A為圓心,適當(dāng)長(zhǎng)為半徑畫(huà)弧,分別交AC、AB于點(diǎn)M、N,再分別以點(diǎn)M、N為圓心,大于MN的長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,作射線(xiàn)AP交邊BC于點(diǎn)D.若AC=9,AB=15,且S△ABC=54,則△ABD的面積是( )
A. B. C. 45D. 35
【答案】B
【解析】
先利用勾股定理計(jì)算出BC=12,作DH⊥AB于H,如圖,設(shè)DH=x,則BD=12-x,利用作法得AD為∠BAC的平分線(xiàn),則根據(jù)角平分線(xiàn)的性質(zhì)得CD=DH=x,接著證明△ADC≌△ADH得到AH=AC=9,所以BH=6,然后在Rt△BDH中利用勾股定理得到62+x2=(12﹣x)2,最后解方程求出x,然后根據(jù)三角形的面積公式即可得到結(jié)論.
解:在Rt△ACB中,BC==12,
作DH⊥AB于H,如圖,設(shè)DH=x,則BD=9﹣x,
由作法得AD為∠BAC的平分線(xiàn),
∴CD=DH=x,
在Rt△ADC與Rt△ADH中, ,
∴△ADC≌△ADH,(HL),
∴AH=AC=9,
∴BH=15﹣9=6,
在Rt△BDH中,62+x2=(12﹣x)2,解得x=,
∴△ABD的面積=ABDH=×15= .
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市移動(dòng)通訊公司開(kāi)設(shè)了兩種通訊業(yè)務(wù),A類(lèi)是固定用戶(hù):先繳50元月租費(fèi),然后每通話(huà)1分鐘再付話(huà)費(fèi)0.4元;B類(lèi)是“神州行”用戶(hù):使用者不繳月租費(fèi),每通話(huà)1分鐘付話(huà)費(fèi)0.6元(這里均指市內(nèi)通話(huà))。如果一個(gè)月內(nèi)通話(huà)時(shí)間為x分鐘,分別設(shè)A類(lèi)和B類(lèi)兩種通訊方式的費(fèi)用為y元和y元,
(1)寫(xiě)出y、y與x之間的函數(shù)關(guān)系式。
(2)一個(gè)月內(nèi)通話(huà)多少分鐘,用戶(hù)選擇A類(lèi)合算?B類(lèi)呢?
(3)若某人預(yù)計(jì)使用話(huà)費(fèi)150元,他應(yīng)選擇哪種方式合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC中,BC=10,AB=,∠ABC=30°,點(diǎn)P在直線(xiàn)AC上,點(diǎn)P到直線(xiàn)AB的距離為1,則CP的長(zhǎng)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一種實(shí)驗(yàn)用軌道彈珠,在軌道上行駛5分鐘后離開(kāi)軌道,前2分鐘其速度v(米/分)與時(shí)間t(分)滿(mǎn)足二次函數(shù)v=at2,后三分鐘其速度v(米/分)與時(shí)間t(分)滿(mǎn)足反比例函數(shù)關(guān)系,如圖,軌道旁邊的測(cè)速儀測(cè)得彈珠1分鐘末的速度為2米/分,求:
(1)二次函數(shù)和反比例函數(shù)的關(guān)系式.
(2)彈珠在軌道上行駛的最大速度.
【答案】(1)v=(2<t≤5) (2)8米/分
【解析】分析:(1)由圖象可知前一分鐘過(guò)點(diǎn)(1,2),后三分鐘時(shí)過(guò)點(diǎn)(2,8),分別利用待定系數(shù)法可求得函數(shù)解析式;
(2)把t=2代入(1)中二次函數(shù)解析式即可.
詳解:(1)v=at2的圖象經(jīng)過(guò)點(diǎn)(1,2),
∴a=2.
∴二次函數(shù)的解析式為:v=2t2,(0≤t≤2);
設(shè)反比例函數(shù)的解析式為v=,
由題意知,圖象經(jīng)過(guò)點(diǎn)(2,8),
∴k=16,
∴反比例函數(shù)的解析式為v=(2<t≤5);
(2)∵二次函數(shù)v=2t2,(0≤t≤2)的圖象開(kāi)口向上,對(duì)稱(chēng)軸為y軸,
∴彈珠在軌道上行駛的最大速度在2秒末,為8米/分.
點(diǎn)睛:本題考查了反比例函數(shù)和二次函數(shù)的應(yīng)用.解題的關(guān)鍵是從圖中得到關(guān)鍵性的信息:自變量的取值范圍和圖象所經(jīng)過(guò)的點(diǎn)的坐標(biāo).
【題型】解答題
【結(jié)束】
24
【題目】閱讀材料:小胖同學(xué)發(fā)現(xiàn)這樣一個(gè)規(guī)律:兩個(gè)頂角相等的等腰三角形,如果具有公共的頂角的頂點(diǎn),并把它們的底角頂點(diǎn)連接起來(lái)則形成一組旋轉(zhuǎn)全等的三角形.小胖把具有這個(gè)規(guī)律的圖形稱(chēng)為“手拉手”圖形.如圖1,在“手拉手”圖形中,小胖發(fā)現(xiàn)若∠BAC=∠DAE,AB=AC,AD=AE,則BD=CE.
(1)在圖1中證明小胖的發(fā)現(xiàn);
借助小胖同學(xué)總結(jié)規(guī)律,構(gòu)造“手拉手”圖形來(lái)解答下面的問(wèn)題:
(2)如圖2,AB=BC,∠ABC=∠BDC=60°,求證:AD+CD=BD;
(3)如圖3,在△ABC中,AB=AC,∠BAC=m°,點(diǎn)E為△ABC外一點(diǎn),點(diǎn)D為BC中點(diǎn),∠EBC=∠ACF,ED⊥FD,求∠EAF的度數(shù)(用含有m的式子表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖:在△ABC中,∠C=90°,AD是∠BAC的平分線(xiàn),DE⊥AB于E,F在AC上,BD=DF;
求證:(1)CF=EB.
(2)AB=AF+2EB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(0,a)、B(b, 0),且a、b滿(mǎn)足: ,點(diǎn)D為x正半軸上一動(dòng)點(diǎn)
(1)求A、B兩點(diǎn)的坐標(biāo)
(2)如圖,∠ADO的平分線(xiàn)交y軸于點(diǎn)C,點(diǎn) F為線(xiàn)段OD上一動(dòng)點(diǎn),過(guò)點(diǎn)F作CD的平行線(xiàn)交y軸于點(diǎn)H,且∠AFH=45°, 判斷線(xiàn)段AH、FD、AD三者的數(shù)量關(guān)系,并予以證明
(3)以AO為腰,A為頂角頂點(diǎn)作等腰△ADO,若∠DBA=30°,直接寫(xiě)出∠DAO的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,等腰梯形ABCD的頂點(diǎn)坐標(biāo)分別為A(1,1),B(2,﹣1),C(﹣2,﹣1),D(﹣1,1).以A為對(duì)稱(chēng)中心作點(diǎn)P(0,2)的對(duì)稱(chēng)點(diǎn)P1,以B為對(duì)稱(chēng)中心作點(diǎn)P1的對(duì)稱(chēng)點(diǎn)P2,以C為對(duì)稱(chēng)中心作點(diǎn)P2的對(duì)稱(chēng)點(diǎn)P3,以D為對(duì)稱(chēng)中心作點(diǎn)P3的對(duì)稱(chēng)點(diǎn)P4,…,重復(fù)操作依次得到點(diǎn)P1,P2,…,則點(diǎn)P2010的坐標(biāo)是( )
A. (2010,2) B. (2010,﹣2) C. (2012,﹣2) D. (0,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,點(diǎn)A(2,0),B(6,2),C(6,6),反比例函數(shù)y1=(x>0)的圖象過(guò)點(diǎn)D,點(diǎn)P是一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象與該反比例函數(shù)的一個(gè)公共點(diǎn),對(duì)于下面四個(gè)結(jié)論:
①反比例函數(shù)的解析式是y1=;
②一次函數(shù)y2=kx+3﹣3k(k≠0)的圖象一定經(jīng)過(guò)(6,6)點(diǎn);
③若一次函數(shù)y2=kx+3﹣3k的圖象經(jīng)過(guò)點(diǎn)C,當(dāng)x>2時(shí),y1<y2;
④對(duì)于一次函數(shù)y2=kx+3﹣3k(k≠0),當(dāng)y隨x的增大而增大時(shí),點(diǎn)P橫坐標(biāo)a的取值范圍是0<a<3.
其中正確的是( 。
A. ①③ B. ②③ C. ②④ D. ③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com