【題目】計算﹣3a2×a3的結(jié)果為( 。
A.﹣3a5
B.3a6
C.﹣3a6
D.3a5

【答案】A
【解析】解:﹣3a2×a3=﹣3a2+3=﹣3a5 , 故選A.
【考點精析】本題主要考查了單項式乘單項式的相關知識點,需要掌握單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點A(﹣1,2)關于y軸的對稱點在(  )

A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了追求更合適的出行體驗,利用網(wǎng)絡呼叫專車的打車方式受到大眾歡迎.據(jù)了解在非高峰期時,某種專車所收取的費用(元)與行駛里程 的函數(shù)關系如圖所示,請根據(jù)圖象解答下列問題:

)求之間的函數(shù)關系式.

)若專車低還行駛(時速),每分鐘另加元的低速費(不足分鐘的部分按分鐘計算).某乘客有一次在非高峰期乘坐專車,途中低速行駛了分鐘,共付費元,求這位乘客坐專車的行駛里程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖8,四邊形ABEG、GEFHHFCD都是邊長為1的正方形.

(1)求證:△AEF∽△CEA;

(2)求證:∠AFB+∠ACB=45°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角墻角AOBOAOB,且OAOB長度不限)中,要砌20m長的墻,與直角墻角AOB圍成地面為矩形的儲倉,且地面矩形AOBC的面積為96m2

(1)求地面矩形AOBC的長;

(2)有規(guī)格為0.80×0.801.00×1.00(單位:m)的地板磚單價分別為55/塊和80/塊,若只選其中一種地板磚都恰好能鋪滿儲倉的矩形地面(不計縫隙),用哪一種規(guī)格的地板磚費用較少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在ABCADE中,AB=ACAD=AE,BAC=DAE,連接BDCE,BDCE相交于點F,若ABC不動,將ADE繞點A任意旋轉(zhuǎn)一個角度.

1)求證:BAD≌△CAE

2)如圖①,若∠BAC=DAE=90°,判斷線段BDCE的關系,并說明理由;

3)如圖②,若∠BAC=DAE=60°,求∠BFC的度數(shù);

4)如圖③,若∠BAC=DAE= ,直接寫出∠BFC的度數(shù)(不需說明理由)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】尺規(guī)作圖:某學校正在進行校園環(huán)境的改造工程設計,準備在校內(nèi)一塊四邊形花壇內(nèi)栽上一棵桂花樹.如圖,要求桂花樹的位置(視為點P),到花壇的兩邊ABBC的距離相等,并且點P到點AD的距離也相等.請用尺規(guī)作圖作出栽種桂花樹的位置點P(不寫作法,保留作圖痕跡).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,DE是邊AB的垂直平分線,交ABE、ACD,連接BD

(1)若∠ABC=∠C,∠A=40°,求∠DBC的度數(shù);

(2)若ABAC,且△BCD的周長為18cm,△ABC的周長為30cm,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE⊥ABE,DF⊥ACF,若BD=CD、BE=CF.

(1)求證:AD平分∠BAC;

(2)直接寫出AB+ACAE之間的等量關系.

查看答案和解析>>

同步練習冊答案