精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知直線l:,過點M(1,0)作x軸的垂線交直線l于點N,過點N作直線l的垂線交x軸于點M1;過點M1x軸的垂線交直線lN1,過點N1作直線l的垂線交x軸于點M2,…;按此作法繼續(xù)下去,則點M5的坐標為_____

【答案】(1024,0).

【解析】

本題需先求出OM1OM2的長,再根據題意得出OMn=4n,求出OM4的長等于44,即可求出M5的坐標.

解:∵直線l的解析式是y=x,

∴∠NOM=60°,ONM=30°.

∵點M的坐標是(1,0),NMy軸,點N在直線y=x上,

NM=

ON=2OM=2.

又∵NM1l,即∠ONM1=90°

OM1=2ON=41OM=4.

同理,OM2=4OM1=42OM,

OM3=4OM2=4×42OM=43OM,

OM5=45OM=1024.

∴點M5的坐標是(1024,0).

故答案是:(1024,0).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,F分別在邊BC,CD上,且BE=CF.連接AE,BF,AEBF交于點G.下列結論錯誤的是(  )

A. AE=BF B. ∠DAE=∠BFC

C. ∠AEB+∠BFC=90° D. AE⊥BF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.
(1)填空:點A坐標為;拋物線的解析式為
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?

(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在△ABC中,BP、CP分別是∠ABC和∠ACB的角平分線,∠BPC=134°,求∠A的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,BDACD.若∠A:ABC:ACB=3:4:5,E為線段BD上任一點.

(1)試求∠ABD的度數;

(2)求證:∠BEC>∠A.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某土產公司組織20輛汽車裝運甲、乙、丙三種土特產共120噸去外地銷售按計劃20輛車都要裝運,每輛汽車只能裝運同一種土特產,且必須裝滿,根據下表提供的信息,解答以下問題

土特產種類

每輛汽車運載量(噸)

8

6

5

每噸土特產獲利(百元)

12

16

10

(1)設裝運甲種土特產的車輛數為x,裝運乙種土特產的車輛數為y,求y與x之間的函數關系式

(2)如果裝運每種土特產的車輛都不少于3輛,那么車輛的安排方案有幾種?并寫出每種安排方案;

(3)若要使此次銷售獲利最大,應采用(2)中哪種安排方案?并求出最大利潤的值

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在“雙十二”期間,A,B兩個超市開展促銷活動,活動方式如下:

A超市:購物金額打9折后,若超過2000元再優(yōu)惠300元;

B超市:購物金額打8

某學校計劃購買某品牌的籃球做獎品,該品牌的籃球在A,B兩個超市的標價相同根據商場的活動方式:

(1)若一次性付款4200元購買這種籃球,則在B商場購買的數量比在A商場購買的數量多5請求出這種籃球的標價;

(2)學校計劃購買100個籃球,請你設計一個購買方案,使所需的費用最少.(直接寫出方案

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y=kx﹣2(k>0)與雙曲線 在第一象限內的交點R,與x軸、y軸的交點分別為P、Q.過R作RM⊥x軸,M為垂足,若△OPQ與△PRM的面積相等,則k的值等于

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC≌△ADE,且∠CAD10°,∠B∠D25°∠EAB120°,試求∠DFB∠DGB的度數.

查看答案和解析>>

同步練習冊答案