【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4).點(diǎn)A在DE上,以A為頂點(diǎn)的拋物線過(guò)點(diǎn)C,且對(duì)稱(chēng)軸x=1交x軸于點(diǎn)B.連接EC,AC.點(diǎn)P,Q為動(dòng)點(diǎn),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)填空:點(diǎn)A坐標(biāo)為;拋物線的解析式為
(2)在圖①中,若點(diǎn)P在線段OC上從點(diǎn)O向點(diǎn)C以1個(gè)單位/秒的速度運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CE上從點(diǎn)C向點(diǎn)E以2個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動(dòng).當(dāng)t為何值時(shí),△PCQ為直角三角形?

(3)在圖②中,若點(diǎn)P在對(duì)稱(chēng)軸上從點(diǎn)A開(kāi)始向點(diǎn)B以1個(gè)單位/秒的速度運(yùn)動(dòng),過(guò)點(diǎn)P做PF⊥AB,交AC于點(diǎn)F,過(guò)點(diǎn)F作FG⊥AD于點(diǎn)G,交拋物線于點(diǎn)Q,連接AQ,CQ.當(dāng)t為何值時(shí),△ACQ的面積最大?最大值是多少?

【答案】
(1)(1,4);y=﹣(x﹣1)2+4
(2)

解:依題意有:OC=3,OE=4,

∴CE= = =5,

當(dāng)∠QPC=90°時(shí),

∵cos∠QCP= =

=

解得t= ;

當(dāng)∠PQC=90°時(shí),

∵cos∠QCP= =

= ,

解得t=

∴當(dāng)t= 或t= 時(shí),△PCQ為直角三角形;


(3)

解:∵A(1,4),C(3,0),

設(shè)直線AC的解析式為y=kx+b,則 ,解得

故直線AC的解析式為y=﹣2x+6.

∵P(1,4﹣t),將y=4﹣t代入y=﹣2x+6中,得x=1+

∴Q點(diǎn)的橫坐標(biāo)為1+ ,

將x=1+ 代入y=﹣(x﹣1)2+4中,得y=4﹣

∴Q點(diǎn)的縱坐標(biāo)為4﹣ ,

∴QF=(4﹣ )﹣(4﹣t)=t﹣ ,

∴SACQ=SAFQ+SCFQ

= FQAG+ FQDG

= FQ(AG+DG)

= FQAD

= ×2(t﹣

=﹣ +t

=﹣ (t2+4﹣4t﹣4)

=﹣ (t﹣2)2+1,

∴當(dāng)t=2時(shí),△ACQ的面積最大,最大值是1.


【解析】解:(1)∵拋物線的對(duì)稱(chēng)軸為x=1,矩形OCDE的三個(gè)頂點(diǎn)分別是C(3,0),D(3,4),E(0,4),點(diǎn)A在DE上,
∴點(diǎn)A坐標(biāo)為(1,4),
設(shè)拋物線的解析式為y=a(x﹣1)2+4,
把C(3,0)代入拋物線的解析式,可得a(3﹣1)2+4=0,
解得a=﹣1.
故拋物線的解析式為y=﹣(x﹣1)2+4,即y=﹣x2+2x+3;
(1)根據(jù)拋物線的對(duì)稱(chēng)軸與矩形的性質(zhì)可得點(diǎn)A坐標(biāo),根據(jù)待定系數(shù)法可得拋物線的解析式;(2)先根據(jù)勾股定理可得CE,再分兩種情況:當(dāng)∠QPC=90°時(shí);當(dāng)∠PQC=90°時(shí);討論可得△PCQ為直角三角形時(shí)t的值;(3)根據(jù)待定系數(shù)法可得直線AC的解析式,根據(jù)SACQ=SAFQ+SCPQ可得SACQ=﹣ (t﹣2)2+1,依此即可求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對(duì)稱(chēng)軸x=﹣1,給出下列結(jié)果: ①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,
則正確的結(jié)論是(

A.①②③④
B.②④⑤
C.②③④
D.①④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD 中,E、F 分別為BC、AD 上的點(diǎn),將四邊形ABEF 沿直線EF 折疊后,點(diǎn)B 落在CD 邊上的點(diǎn)G 處,點(diǎn)A 的對(duì)應(yīng)點(diǎn)為點(diǎn)H.再將折疊后的圖形展開(kāi),連接BF、GF、BG,若BF⊥GF.
(1)求證:△ABF≌△DFG;
(2)已知AB=3,AD=5,求tan∠CBG 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BD,CE是△ABC的兩條高,直線BD,CE相交于點(diǎn)H.

(1)若∠BAC=100°,求∠DHE的度數(shù);

(2)若△ABC中∠BAC=50°,直接寫(xiě)出∠DHE的度數(shù)是____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平行四邊形ABCD中,點(diǎn)E在AD邊上,連接BE、CE,EB平分∠AEC
(1)如圖1,判斷△BCE的形狀,并說(shuō)明理由;
(2)如圖2,若∠A=90°,BC=5,AE=1,求線段BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,P是AD上一動(dòng)點(diǎn),O為BD的中點(diǎn),連接PO并延長(zhǎng),交BC于點(diǎn)Q.

(1) 求證:四邊形PBQD是平行四邊形

(2) 若AD=6cm,AB=4cm, 點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動(dòng)(不與點(diǎn)D重合),設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t s , 請(qǐng)用含t的代數(shù)式表示PD的長(zhǎng),并求出當(dāng)t為何值時(shí),四邊形PBQD是菱形。并求出此時(shí)菱形的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)(2,-1),與軸交于點(diǎn)A,F點(diǎn)為(1,2).

(Ⅰ)求的值及A點(diǎn)的坐標(biāo);

(Ⅱ)將函數(shù)的圖象沿方向向上平移得到函數(shù),其圖象與軸交于點(diǎn)Q,且OQ=QF,求平移后的函數(shù)的解析式;

(Ⅲ)若點(diǎn)A關(guān)于的對(duì)稱(chēng)點(diǎn)為K,請(qǐng)求出直線FK與軸的交點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l:,過(guò)點(diǎn)M(1,0)作x軸的垂線交直線l于點(diǎn)N,過(guò)點(diǎn)N作直線l的垂線交x軸于點(diǎn)M1;過(guò)點(diǎn)M1x軸的垂線交直線lN1,過(guò)點(diǎn)N1作直線l的垂線交x軸于點(diǎn)M2,…;按此作法繼續(xù)下去,則點(diǎn)M5的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,O為坐標(biāo)原點(diǎn),四邊形OACB是菱形,OB在x軸的正半軸上,sin∠AOB= ,反比例函數(shù)y= 在第一象限內(nèi)的圖象經(jīng)過(guò)點(diǎn)A,與BC交于點(diǎn)F,則△AOF的面積等于

查看答案和解析>>

同步練習(xí)冊(cè)答案