【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖,其對稱軸x=﹣1,給出下列結果: ①b2>4ac;②abc>0;③2a+b=0;④a+b+c>0;⑤a﹣b+c<0,
則正確的結論是(

A.①②③④
B.②④⑤
C.②③④
D.①④⑤

【答案】D
【解析】解:∵拋物線與x軸有兩個交點,∴△=b2﹣4ac>0,即b2>4ac,故①正確; ∵拋物線對稱軸為x=﹣ <0,與y軸交于負半軸,∴ab>0,c<0,abc<0,故②錯誤;
∵拋物線對稱軸為x=﹣ =﹣1,∴2a﹣b=0,故③錯誤;
∵當x=1時,y>0,即a+b+c>0,故④正確;
∵當x=﹣1時,y<0,即a﹣b+c<0,故⑤正確;
正確的是①④⑤.
故選D.
【考點精析】利用二次函數(shù)圖象以及系數(shù)a、b、c的關系對題目進行判斷即可得到答案,需要熟知二次函數(shù)y=ax2+bx+c中,a、b、c的含義:a表示開口方向:a>0時,拋物線開口向上; a<0時,拋物線開口向下b與對稱軸有關:對稱軸為x=-b/2a;c表示拋物線與y軸的交點坐標:(0,c).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,這是一個供滑板愛好者使用的U型池,該U型池可以看成是一個長方體去掉一個“半圓柱”,中間可供滑行部分的截面是半徑為4 m的半圓,其邊緣ABCD=20 m,點ECD上,CE=2 m.一滑板愛好者從A點滑到E點,則他滑行的最短路程約為____________(邊緣部分的厚度忽略不計,結果保留整數(shù).提示:482≈222).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作等邊△ABC和等邊△CDE,ADBE交于點OADBC交于點P,BECD交于點Q,連接PQ.以下五個結論:

①AD=BE;②PQ∥AE;③AP=BQ④DE=DP; ⑤∠AOB=60°

其中正確的結論的個數(shù)是( )

A. 2B. 3C. 4D. 5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】先閱讀,后解答:

像上述解題過程中,相乘,積不含有二次根式,我們可將這兩個式子稱為互為有理化因式,上述解題過程也稱為分母有理化,

(1)的有理化因式是________;的有理化因式是________.

(2)將下列式子進行分母有理化:①________;②________.

(3)計算

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,點O在邊AB上,以點O為圓心,OA為半徑的圓經(jīng)過點C,過點C作直線MN,使∠BCM=2∠A.
(1)判斷直線MN與⊙O的位置關系,并說明理由;
(2)若OA=4,∠BCM=60°,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列命題中真命題的個數(shù)( 。

(1)已知直角三角形面積為4,兩直角邊的比為1:2,則它的斜邊為5;

(2)直角三角形的最大邊長為26,最短邊長為10,則另一邊長為24;

(3)在直角三角形中,兩條直角邊長為n2﹣12n,則斜邊長為n2+1;

(4)等腰三角形面積為12,底邊上的底為4,則腰長為5.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,若拋物線L1的頂點A在拋物線L2上,拋物線L2的頂點B也在拋物線L1上(點A與點B不重合),我們定義:這樣的兩條拋物L1 , L2互為“友好”拋物線,可見一條拋物線的“友好”拋物線可以有多條.

(1)如圖2,已知拋物線L3:y=2x2﹣8x+4與y軸交于點C,試求出點C關于該拋物線對稱軸對稱的點D的坐標;
(2)請求出以點D為頂點的L3的友好拋物線L4的解析式,并指出L3與L4中y同時隨x增大而增大的自變量的取值范圍;
(3)若拋物y=a1 (x﹣m)2+n的任意一條友好拋物線的解析式為y=a2 (x﹣h)2+k,請寫出a1與a2的關系式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,點E,F(xiàn)分別在邊BC,CD上,且BE=CF.連接AE,BF,AEBF交于點G.下列結論錯誤的是(  )

A. AE=BF B. ∠DAE=∠BFC

C. ∠AEB+∠BFC=90° D. AE⊥BF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設運動時間為t秒.
(1)填空:點A坐標為;拋物線的解析式為
(2)在圖①中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當一個點到達終點時,另一個點隨之停止運動.當t為何值時,△PCQ為直角三角形?

(3)在圖②中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當t為何值時,△ACQ的面積最大?最大值是多少?

查看答案和解析>>

同步練習冊答案