【題目】如圖①,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去四個(gè)全等的等腰直角三角形(陰影部分所示),其中E,F(xiàn)在AB上;再沿虛線折起,點(diǎn)A,B,C,D恰好重合于點(diǎn)O處(如圖②所示),形成有一個(gè)底面為正方形GHMN的包裝盒,設(shè)AE=x (cm).
(1)求線段GF的長(zhǎng);(用含x的代數(shù)式表示)
(2)當(dāng)x為何值時(shí),矩形GHPF的面積S (cm2)最大?最大面積為多少?
(3)試問(wèn):此種包裝盒能否放下一個(gè)底面半徑為15cm,高為10cm的圓柱形工藝品,且使得圓柱形工藝品的一個(gè)底面恰好落在圖②中的正方形GHMN內(nèi)?若能,請(qǐng)求出滿足條件的x的值或范圍;若不能,請(qǐng)說(shuō)明理由.
【答案】(1)30﹣x;(2)當(dāng)x=15時(shí),S最大=450;(3)15≤x≤30﹣5.
【解析】
試題分析:(1)AE=BF=x,據(jù)此即可利用x表示出等腰直角△EFG的斜邊EF的長(zhǎng),然后利用三角函數(shù)求得GF的長(zhǎng);
(2)首先利用矩形的面積公式表示出面積S,然后利用二次函數(shù)的性質(zhì)即可求解;
(3)首先求得與正方形各邊相切的線段的長(zhǎng)度,然后判斷高小于或等于10cm即可判斷,然后根據(jù)NG的長(zhǎng)不小于30cm,高不小于10cm即可列不等式求得x的范圍.
解:(1)∵AE=BF=x,
∴EF=AB﹣AE﹣BF=60﹣2x.
∴在Rt△GEF中,GF=EF=×(60﹣2x)=30﹣x;
(2)∵NG=AE=x,即GH=NG=x,
∴S=x (30﹣x)=﹣2x2+60x
=﹣2(x﹣15)2+450;
∵﹣2<0,
∴當(dāng)x=15時(shí),S最大=450;
(3)能放下.
理由是:當(dāng)圓柱形工藝品與GHMN相切時(shí),x=15,
此時(shí),30﹣x=30﹣15×=30﹣30>10,故一定能放下.
根據(jù)題意得:
解得:15≤x≤30﹣5.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)45°得到△A′B′C′,若∠BAC=90°,AB=AC=2,則圖中陰影部分的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某城市5年前人均年收入為n元,預(yù)計(jì)今年人均年收入是5年前的2倍多800元,則今
年人均年收入將達(dá)____ _____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列計(jì)算正確的是( )
A.x4+x4=2x8 B.x3x2=x6 C.(x2y)3=x6y3 D.(x﹣y)(y﹣x)=x2﹣y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),二次函數(shù)y=x2+c的圖象拋物線交x軸于點(diǎn)A,B(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,﹣3).
(1)求∠ABC的度數(shù);
(2)若點(diǎn)D是第四象限內(nèi)拋物線上一點(diǎn),△ADC的面積為,求點(diǎn)D的坐標(biāo);
(3)若將△OBC繞平面內(nèi)某一點(diǎn)順時(shí)針旋轉(zhuǎn)60°得到△O′B′C′,點(diǎn)O′,B′均落在此拋物線上,求此時(shí)O′的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AD⊥BC且BD>CD,DF⊥AB,△CDE和△ADB都是等腰直角三角形,給出下列結(jié)論,正確的是
①△ADC≌△BDE;
②△ADF≌△BDF;
③△CDE≌△AFD;
④△ACE≌ABE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】
(1)寫出A、B兩點(diǎn)所表示的數(shù),并求線段AB的長(zhǎng);
(2)將點(diǎn)A向左移動(dòng)個(gè)單位長(zhǎng)度得到點(diǎn)C,點(diǎn)C表示的數(shù)是多少,并在數(shù)軸上表示出來(lái)
(3)數(shù)軸上存在一點(diǎn)D,使得C、D兩點(diǎn)間的距離為8,請(qǐng)寫出D點(diǎn)表示的數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為:A(2,4),B(4,3),C(1,1),直線l過(guò)點(diǎn)(﹣1,0)且平行于y軸.
(1)在圖中作出△ABC關(guān)于x軸對(duì)稱的△A′B′C′;
(2)作出△ABC關(guān)于直線l對(duì)稱的△A1B1C1,并寫出△A1B1C1三個(gè)頂點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com