【題目】如圖,某測量小組為了測量山BC的高度,在地面A處測得山頂B的仰角45°,然后沿著坡度為1的坡面AD走了200米到D處,此時在D處測得山頂B的仰角為60°,則山高BC_____米(結(jié)果保留根號).

【答案】300+100

【解析】

DFACF.解直角三角形分別求出BE、EC即可解決問題.

DFACF

DFAF1AD200米,

tanDAF

∴∠DAF30°,

DFAD×200100(米),

∵∠DEC=∠BCA=∠DFC90°

∴四邊形DECF是矩形,

ECDF100(米),

∵∠BAC45°,BCAC

∴∠ABC45°,

∵∠BDE60°,DEBC

∴∠DBE90°﹣∠BDE90°60°30°,

∴∠ABD=∠ABC﹣∠DBE45°30°15°,∠BAD=∠BAC﹣∠DAC45°30°15°,

∴∠ABD=∠BAD

ADBD200(米),

RtBDE中,sinBDE,

BEBDsinBDE200×300(米),

BCBE+EC300+100(米);

故答案為:300+100

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以AB邊為直徑的O經(jīng)過點P,C是O上一點,連結(jié)PC交AB于點E,且ACP=60°,PA=PD.

(1)試判斷PD與O的位置關(guān)系,并說明理由;

(2)若點C是弧AB的中點,已知AB=4,求CECP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點H,點F上一點,連接AFCD的延長線于點E

1)求證:AFCACE;

2)若AC5,DC6,當(dāng)點F的中點時,求AF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,D,E分別是AB,BC邊上的點,且DE∥AC,若,則△ACD的面積為(

A. 64 B. 72 C. 80 D. 96

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是位于陜西省西安市薦福寺內(nèi)的小雁塔,是中國早期方形密檐式磚塔的典型作品,并作為絲綢之路的一處重要遺址點,被列入《世界遺產(chǎn)名錄》.小銘、小希等幾位同學(xué)想利用一些測量工具和所學(xué)的幾何知識測量小雁塔的高度,由于觀測點與小雁塔底部間的距離不易測量,因此經(jīng)過研究需要進(jìn)行兩次測量,于是在陽光下,他們首先利用影長進(jìn)行測量,方法如下:小銘在小雁塔的影子頂端D處豎直立一根木棒CD,并測得此時木棒的影長DE=2.4米;然后,小希在BD的延長線上找出一點F,使得A、C、F三點在同一直線上,并測得DF=2.5米.已知圖中所有點均在同一平面內(nèi),木棒高CD=1.72米,ABBF,CDBF,試根據(jù)以上測量數(shù)據(jù),求小雁塔的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC⊙O的直徑,BC⊙O的弦,點P⊙O外一點,連接PA,PBAB,已知∠PBA=∠C

1)求證:PB⊙O的切線;

2)連接OP,若OP∥BC,且OP=8,⊙O的半徑為,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A1,m2)、點B2m1)是函數(shù)y(其中x0)圖象上的兩點.

1)求點A、點B的坐標(biāo)及函數(shù)的解析式;

2)連接OA、OBAB,求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)自變量的值和它對應(yīng)的函數(shù)值如下表所示:

0

1

2

3

4

3

0

-1

0

1)請寫出該二次函數(shù)圖像的開口方向、對稱軸、頂點坐標(biāo)和的值;

2)設(shè)該二次函數(shù)圖像與軸的左交點為,它的頂點為,該圖像上點的橫坐標(biāo)為4,求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)動員將小球沿與地面成一定角度的方向擊出,在不考慮空氣阻力的條件下,小球的飛行高度hm)與它的飛行時間ts)滿足二次函數(shù)關(guān)系,th的幾組對應(yīng)值如下表所示.

ts

0

0.5

1

1.5

2

hm

0

8.75

15

18.75

20

(1)求ht之間的函數(shù)關(guān)系式(不要求寫t的取值范圍);

(2)求小球飛行3s時的高度;

(3)問:小球的飛行高度能否達(dá)到22m?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案