【題目】A、B、C、D是四個城市,現(xiàn)在要建造一個火力發(fā)電廠M,為了節(jié)省資金,應(yīng)使輸電線路最短,因此電廠到這四個城市距離之和最小,請你確定M的位置.

【答案】見解析.

【解析】根據(jù)A、B、C、D是四個城市的不同位置,進(jìn)行分類討論即可.

分情況討論:(1)如果A、B、C、D四點(diǎn)中的任意三點(diǎn)都不在同一直線上(如圖1),根據(jù)兩點(diǎn)之間線段最短”,M點(diǎn)應(yīng)在A、C兩點(diǎn)連線上,又應(yīng)在B、D兩點(diǎn)連線上,所以點(diǎn)MACBD的交點(diǎn)為;(2)如果A、B、C、D四點(diǎn)中有三點(diǎn)在同一條直線上(如圖2),M點(diǎn)應(yīng)在A、C兩點(diǎn)連線上,且M點(diǎn)也應(yīng)在線段BD上,顯然M點(diǎn)應(yīng)與B點(diǎn)重合;

3)如果A、B、C、D四點(diǎn)在同一條直線上(如圖3),M點(diǎn)應(yīng)在線段AD上,也應(yīng)在線段BC上,因此,M點(diǎn)可以是線段BC上的任何一點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段ABCD的公共部分BD=AB= CD,線段AB、CD的中點(diǎn)EF之間距離是10cm,AB,CD的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】按圖中方式用火柴棒搭正方形

①搭1個正方形需要 根火柴棒;

②搭2個正方形需要 根火柴棒,搭3個正方形需要 根火柴棒;

③搭10個這樣的正方形需要多少根火柴棒;

④搭100個這樣的正方形需要多少根火柴棒?

⑤如果用x表示所搭正方形的個數(shù),那么搭x個這樣的正方形需要多少根火柴棒?與同伴交流。

⑥根據(jù)你的計算方法,搭200個這樣的正方形需要多少根火柴棒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知線段AB,請按要求完成下列問題.

(1)用直尺和圓規(guī)作圖,延長線段AB到點(diǎn)C,使BC=AB;反向延長線段AB到點(diǎn)D,使AD=AC;

(2)如果AB=2cm;①CD的長度;設(shè)點(diǎn)P是線段BD的中點(diǎn),求線段CP的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A(2,0),B(0,2),將扇形AOB沿x軸正方向做無滑動的滾動,在滾動過程中點(diǎn)O的對應(yīng)點(diǎn)依次記為點(diǎn)O1 , 點(diǎn)O2 , 點(diǎn)O3…,則O10的坐標(biāo)是( )

A.(16+4π,0)
B.(14+4π,2)
C.(14+3π,2)
D.(12+3π,0)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AD是∠BAC的平分線,且∠B=ADB,過點(diǎn)CCM垂直于AD的延長線,垂足為M.

(1)若∠DCM=α,試用α表示∠BAD;

(2)求證:AB+AC=2AM.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解并完成下面問題:

我們知道,任意一個正整數(shù)都可以進(jìn)行這樣的因式分解:是正整數(shù)),在的所有這種分解中,如果兩因數(shù)之差的絕對值最小,我們就稱的最佳分解并規(guī)定:

(其中).例如:可以分解成,因為,所以的最佳分解,所以

如果一個正整數(shù)是另外一個正整數(shù)的平方,我們稱正整數(shù)是完全平方數(shù),若是一個完全平方數(shù),求的值;

如果一個兩位正整數(shù),交換其個位數(shù)字與十位數(shù)字得到的新兩位數(shù)減去原數(shù)所得的差為,那么我們稱這個兩位正整數(shù)吉祥數(shù),求符合條件的所有吉祥數(shù)”;

在()中的所有吉祥數(shù)中,求的最小值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小力在電腦上設(shè)計了一個有理數(shù)運(yùn)算程序:輸入a,加※鍵,再輸入b,得到運(yùn)算ab=a2-b2-[2(a-1)-]÷(a-b).

(1)(-2)的值;

(2)小華在運(yùn)用此程序計算時,屏幕顯示該程序無法操作”,你猜小華在輸入數(shù)據(jù)時,可能出現(xiàn)什么情況?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,有兩條公路OM、ON相交成30°角,沿公路OM方向離O點(diǎn)80米處有一所學(xué)校A.當(dāng)重型運(yùn)輸卡車P沿道路ON方向行駛時,在以P為圓心50米長為半徑的圓形區(qū)域內(nèi)都會受到卡車噪聲的影響,且卡車P與學(xué)校A的距離越近噪聲影響越大.若一直重型運(yùn)輸卡車P沿道路ON方向行駛的速度為18千米/時.

(1)求對學(xué)校A的噪聲影響最大時卡車P與學(xué)校A的距離;

(2)求卡車P沿道路ON方向行駛一次給學(xué)校A帶來噪聲影響的時間.

查看答案和解析>>

同步練習(xí)冊答案