【題目】如圖,在平面直角坐標系中,⊙P的圓心是(2,a)(a>2),半徑為2,函數(shù)y=x的圖象被⊙P截得的弦AB的長為 ,則a的值是( )
A.2
B.2+
C.2
D.2+
【答案】B
【解析】解:過P點作PE⊥AB于E,過P點作PC⊥x軸于C,交AB于D,連接PA.
∵PE⊥AB,AB=2 ,半徑為2,
∴AE= AB= ,PA=2,
根據(jù)勾股定理得:PE= =1,
∵點A在直線y=x上,
∴∠AOC=45°,
∵∠DCO=90°,
∴∠ODC=45°,
∴△OCD是等腰直角三角形,
∴OC=CD=2,
∴∠PDE=∠ODC=45°,
∴∠DPE=∠PDE=45°,
∴DE=PE=1,
∴PD= .
∵⊙P的圓心是(2,a),
∴a=PD+DC=2+ .
故選:B.
【考點精析】根據(jù)題目的已知條件,利用圓的定義和直線與圓的三種位置關(guān)系的相關(guān)知識可以得到問題的答案,需要掌握平面上到定點的距離等于定長的所有點組成的圖形叫做圓.定點稱為圓心,定長稱為半徑;直線與圓有三種位置關(guān)系:無公共點為相離;有兩個公共點為相交,這條直線叫做圓的割線;圓與直線有唯一公共點為相切,這條直線叫做圓的切線,這個唯一的公共點叫做切點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】解下列方程:
(1)2(10﹣0.5y)=﹣(1.5y+2)
(2)(x﹣5)=3﹣(x﹣5)
(3)﹣1=
(4)x﹣(x﹣9)=[x+(x﹣9)]
(5) -=0.5x+2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為創(chuàng)建“國家園林城市”,某校舉行了以“愛我黃石”為主題的圖片制作比賽,評委會對200名同學(xué)的參賽作品打分發(fā)現(xiàn),參賽者的成績x均滿足50≤x<100,并制作了頻數(shù)分布直方圖,如圖.
根據(jù)以上信息,解答下列問題:
(1)請補全頻數(shù)分布直方圖;
(2)若依據(jù)成績,采取分層抽樣的方法,從參賽同學(xué)中抽40人參加圖片制作比賽總結(jié)大會,則從成績80≤x<90的選手中應(yīng)抽多少人?
(3)比賽共設(shè)一、二、三等獎,若只有25%的參賽同學(xué)能拿到一等獎,則一等獎的分數(shù)線是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD的兩條對角線AC和BD相交于點O,并且BD=4,AC=6,BC= .
(1)AC與BD有什么位置關(guān)系?為什么?
(2)四邊形ABCD是菱形嗎?為什么.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知BD垂直平分線段AC,∠BCD=∠ADF,AF⊥AC
(1)證明:四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖 AB=AC,CD⊥AB于D,BE⊥AC于E,BE與CD相交于點O.
(1)求證AD=AE;
(2)連接OA,BC,試判斷直線OA,BC的關(guān)系并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AD∥BC,AB∥CD,E在線段BC延長線上,AE平分∠BAD.連接DE,若∠ADE=3∠CDE,∠AED=60°.
(1)求證:∠ABC=∠ADC;
(2)求∠CDE的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com