【題目】如圖,已知ABC內(nèi)接于O,點(diǎn)C在劣弧AB上(不與點(diǎn)A,B重合),點(diǎn)D為弦BC的中點(diǎn),DEBC,DE與AC的延長(zhǎng)線交于點(diǎn)E,射線AO與射線EB交于點(diǎn)F,與O交于點(diǎn)G,設(shè)GAB=ɑ,ACB=β,EAG+EBA=γ,

(1)點(diǎn)點(diǎn)同學(xué)通過(guò)畫圖和測(cè)量得到以下近似數(shù)據(jù):

ɑ

30°

40°

50°

60°

β

120°

130°

140°

150°

γ

150°

140°

130°

120°

猜想:β關(guān)于ɑ的函數(shù)表達(dá)式,γ關(guān)于ɑ的函數(shù)表達(dá)式,并給出證明:

(2)若γ=135°,CD=3,ABE的面積為ABC的面積的4倍,求O半徑的長(zhǎng).

【答案】(1)β=α+90°,γ=﹣α+180°(2)5

【解析】

試題分析:(1)由圓周角定理即可得出β=α+90°,然后根據(jù)D是BC的中點(diǎn),DEBC,可知EDC=90°,由三角形外角的性質(zhì)即可得出CED=α,從而可知O、A、E、B四點(diǎn)共圓,由圓內(nèi)接四邊形的性質(zhì)可知:EBO+EAG=180°,即γ=﹣α+180°;

(2)由(1)及γ=135°可知BOA=90°,BCE=45°,BEC=90°,由于ABE的面積為ABC的面積的4倍,所以,根據(jù)勾股定理即可求出AE、AC的長(zhǎng)度,從而可求出AB的長(zhǎng)度,再由勾股定理即可求出O的半徑r.

試題解析:(1)猜想:β=α+90°,γ=﹣α+180°

連接OB,

由圓周角定理可知:2BCA=360°﹣BOA,

OB=OA,

∴∠OBA=OAB=α,

∴∠BOA=180°﹣2α,

2β=360°﹣(180°﹣2α),

β=α+90°,

D是BC的中點(diǎn),DEBC,

OE是線段BC的垂直平分線,

BE=CE,BED=CED,EDC=90°

∵∠BCA=EDC+CED,

β=90°+CED,

∴∠CED=α,

∴∠CED=OBA=α,

O、A、E、B四點(diǎn)共圓,

∴∠EBO+EAG=180°,

∴∠EBA+OBA+EAG=180°,

γ+α=180°;

(2)當(dāng)γ=135°時(shí),此時(shí)圖形如圖所示,

α=45°,β=135°,

∴∠BOA=90°,BCE=45°,

由(1)可知:O、A、E、B四點(diǎn)共圓,

∴∠BEC=90°,

∵△ABE的面積為ABC的面積的4倍,

,

設(shè)CE=3x,AC=x,

由(1)可知:BC=2CD=6,

∵∠BCE=45°,

CE=BE=3x,

由勾股定理可知:(3x)2+(3x)2=62

x=,

BE=CE=3,AC=,

AE=AC+CE=4

在RtABE中,

由勾股定理可知:AB2=(32+(42

AB=5,

∵∠BAO=45°,

∴∠AOB=90°,

在RtAOB中,設(shè)半徑為r,

由勾股定理可知:AB2=2r2

r=5,

∴⊙O半徑的長(zhǎng)為5.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】深圳市某學(xué)校抽樣調(diào)查,A類學(xué)生騎共享單車,B類學(xué)生坐公交車、私家車等,C類學(xué)生步行,D類學(xué)生(其它),根據(jù)調(diào)查結(jié)果繪制了不完整的統(tǒng)計(jì)圖.

類型

頻數(shù)

頻率

A

30

B

18

0.15

C

0.40

D

(1)學(xué)生共________人, ________, ________;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)若該校共有2000人,騎共享單車的有________人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,CA=CB,CD=CE,∠ACB=DCE

1)求證:BE=AD;

2)當(dāng)α=90°時(shí),取AD,BE的中點(diǎn)分別為點(diǎn)P、Q,連接CP,CQPQ,如圖②,判斷CPQ的形狀,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+mx+nx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,拋物線的對(duì)稱軸交x軸于點(diǎn)D,已知A10),C02).

1)求拋物線的表達(dá)式;

2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使PCD是以CD為腰的等腰三角形?如果存在,直接寫出P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;

3)點(diǎn)E時(shí)線段BC上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)Ex軸的垂線與拋物線相交于點(diǎn)F,當(dāng)點(diǎn)E運(yùn)動(dòng)到什么位置時(shí),四邊形CDBF的面積最大?求出四邊形CDBF的最大面積及此時(shí)E點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,函數(shù)y=x的圖象與函數(shù)y的圖象相交于點(diǎn)P(1,m).

(1) m,k 的值.

(2)直線 y=2與函數(shù)y=x的圖象相交于點(diǎn)A,與函數(shù)y的圖象相交于點(diǎn)B,求線段 AB 長(zhǎng).

(3)直接寫出不等式x的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校的一個(gè)數(shù)學(xué)興趣小組在本校學(xué)生中開展主題為環(huán)廣西公路自行車世界巡回賽的專題調(diào)查活動(dòng),取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,問(wèn)卷調(diào)查的結(jié)果分為非常了解”、“比較了解”、“基本了解”、“不太了解四個(gè)等級(jí),分別記作A、B、C、D;并根據(jù)調(diào)查結(jié)果繪制成如圖所示不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中信息解答下列問(wèn)題:

(1)請(qǐng)求出本次被調(diào)查的學(xué)生共多少人,并將條形統(tǒng)計(jì)圖補(bǔ)充完整.

(2)估計(jì)該校1500名學(xué)生中“C等級(jí)的學(xué)生有多少人?

(3)在“B等級(jí)的學(xué)生中,初三學(xué)生共有4人,其中13女,在這4個(gè)人中,隨機(jī)選出2人進(jìn)行采訪,則所選兩位同學(xué)中有男同學(xué)的概率是多少?請(qǐng)用列表法或樹狀圖的方法求解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣+bx+cx軸于點(diǎn)A﹣2,0)和點(diǎn)B,交y軸于點(diǎn)C0,3),點(diǎn)Dx軸上一動(dòng)點(diǎn),連接CD,將線段CD繞點(diǎn)D旋轉(zhuǎn)得到DE,過(guò)點(diǎn)E作直線lx軸,垂足為H,過(guò)點(diǎn)CCFlF,連接DF

1)求拋物線解析式;

2)若線段DECD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)90°得到,求線段DF的長(zhǎng);

3)若線段DECD繞點(diǎn)D旋轉(zhuǎn)90°得到,且點(diǎn)E恰好在拋物線上,請(qǐng)求出點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB=AC,AD=AE,若添加一個(gè)條件不能得到“△ABD≌△ACE”是( 。

A. ∠ABD=∠ACE B. BD=CE C. ∠BAD=∠CAE D. ∠BAC=∠DAE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了維護(hù)國(guó)家主權(quán)和海洋權(quán)力,海監(jiān)部門對(duì)我國(guó)領(lǐng)海實(shí)現(xiàn)了常態(tài)化巡航管理,如圖,正在執(zhí)行巡航任務(wù)的海監(jiān)船以每小時(shí)50海里的速度向正東方航行,在處測(cè)得燈塔在北偏東方向上,繼續(xù)航行1小時(shí)到達(dá)處,此時(shí)測(cè)得燈塔在北偏東方向上.

(1)求的度數(shù);

(2)已知在燈塔的周圍25海里內(nèi)有暗礁,問(wèn)海監(jiān)船繼續(xù)向正東方向航行是否安全?

查看答案和解析>>

同步練習(xí)冊(cè)答案