【題目】甲和乙兩位同學(xué)想測(cè)量一下廣場(chǎng)中央的照明燈P的高度,如圖,當(dāng)甲站在A處時(shí),乙測(cè)得甲的影子長(zhǎng)AD正好與他的身高AM相等,接著甲沿AC方向繼續(xù)向前走,走到點(diǎn)B處時(shí),甲的影子剛好是線段AB,此時(shí)測(cè)得AB的長(zhǎng)為1.2m.已知甲直立時(shí)的身高為1.8m,求照明燈的高CP的長(zhǎng).

【答案】路燈高CP5.4米.

【解析】

根據(jù)AMCD,BNCDPCCD,得到AMPCBN,從而得到ACP∽△ABN,利用相似三角形對(duì)應(yīng)邊的比相等列出比例式求解即可.

解:如圖,設(shè)CP長(zhǎng)為xm,

AMDC,DAMA

∴∠D45°

又∵CPDC

∴∠CPD45°

CDCPx

CPDC,BNDC

BNCP

∴∠CPA=∠BNA,

又∵∠NAB=∠PAC

∴△ACP∽△ABN

解得 x5.4.

答:路燈高CP5.4米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)yax+b與反比例函數(shù)y的圖象交于A、B兩點(diǎn),點(diǎn)A坐標(biāo)為(m,2),點(diǎn)B坐標(biāo)為(﹣4n),OAx軸正半軸夾角的正切值為,直線ABy軸于點(diǎn)C,過Cy軸的垂線,交反比例函數(shù)圖象于點(diǎn)D,連接OD、BD

1)求一次函數(shù)與反比例函數(shù)的解析式;

2)求四邊形OCBD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,OBD中點(diǎn),以BC為邊向正方形內(nèi)作等邊,連接并延長(zhǎng)AECDF,連接BD分別交CEAFG、H,下列結(jié)論:;;;,其中正確的結(jié)論有  

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形中,,以為圓心,為半徑作⊙,為⊙上一動(dòng)點(diǎn),連接.為直角邊作,使,則點(diǎn)與點(diǎn)的最小距離為____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,EAB中點(diǎn),BC4BF,那么圖中與ADE相似的三角形有( )

A. CDFB. BEFC. BEF、DCFD. BEFEDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)戶承包荒山種植某產(chǎn)品種蜜柚已知該蜜柚的成本價(jià)為8千克,投入市場(chǎng)銷售時(shí),調(diào)查市場(chǎng)行情,發(fā)現(xiàn)該蜜柚銷售不會(huì)虧本,且每天銷量千克與銷售單價(jià)千克之間的函數(shù)關(guān)系如圖所示.

yx的函數(shù)關(guān)系式,并寫出x的取值范圍;

當(dāng)該品種蜜柚定價(jià)為多少時(shí),每天銷售獲得的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖在直角坐標(biāo)系中,有菱形, 點(diǎn)的坐標(biāo)為,對(duì)角線, 相交于點(diǎn),雙曲線經(jīng)過點(diǎn),交的延長(zhǎng)線于點(diǎn),且,則點(diǎn)的坐標(biāo)為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】通過某十字路口的汽車,可能直行,也可能向左轉(zhuǎn)或向右轉(zhuǎn).如果這三種可能性大小相同,求三輛汽車經(jīng)過這個(gè)十字路口時(shí),下列事件的概率.

(1)三輛車全部繼續(xù)直行;

(2)兩輛車向右轉(zhuǎn),一輛車向左轉(zhuǎn);

(3)至少有兩輛車向左轉(zhuǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=10,BC=8,以CD為直徑作⊙O.將矩形ABCD繞點(diǎn)C旋轉(zhuǎn),使所得矩形A′B′CD′的邊A′B′與⊙O相切,切點(diǎn)為E,邊CD′與⊙O相交于點(diǎn)F,則CF的長(zhǎng)為_____

查看答案和解析>>

同步練習(xí)冊(cè)答案