【題目】某莊有甲、乙兩家草莓采摘園的草莓銷售價(jià)格相同,春節(jié)期間,兩家采摘園將推出優(yōu)惠方案,甲園的優(yōu)惠方案是:游客進(jìn)園需購(gòu)買(mǎi)門(mén)票,采摘的草莓六折優(yōu)惠;乙園的優(yōu)惠方案是:游客進(jìn)園不需購(gòu)買(mǎi)門(mén)票,采摘的草莓超過(guò)一定數(shù)量后,超過(guò)部分打折優(yōu)惠.優(yōu)惠期間,某游客的草莓采摘量為(千克),在甲園所需總費(fèi)用為(元),在乙園所需總費(fèi)用為(元),、與之間的函數(shù)關(guān)系如圖所示.
(1)甲采摘園的門(mén)票是_____元,兩個(gè)采摘園優(yōu)惠前的草莓單價(jià)是每千克____元;
(2)當(dāng)時(shí),求與的函數(shù)表達(dá)式;
(3)游客在“春節(jié)期間”采摘多少千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.
【答案】(1)60,30;(2);(3)采摘5千克或20千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.
【解析】
(1)根據(jù)單價(jià)=總價(jià)÷數(shù)量,即可解決問(wèn)題;
(2)y乙與x的函數(shù)表達(dá)式結(jié)合圖象利用待定系數(shù)法即可解決.
(3)根據(jù)圖象可得y甲函數(shù)表達(dá)式,分別討論x<10和x>10時(shí),y甲=y乙,求出x的值即可.
(1)由圖象可知:甲采摘園的門(mén)票是60元,
由y乙圖象可知采摘草莓10千克的費(fèi)用為300元,且超過(guò)10千克打折,
∴優(yōu)惠前的草莓單價(jià)是每千克300÷10=30元,
故答案為:60,30;
(2)當(dāng)時(shí),設(shè)
把點(diǎn),代入,
得,
解得,
∴當(dāng)時(shí),,
(3)
當(dāng)時(shí),
,解得
當(dāng)時(shí),
解得
∴采摘5千克或20千克草莓時(shí),甲、乙兩家采摘園的總費(fèi)用相同.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某項(xiàng)工程由甲、乙兩隊(duì)合做12天可以完成,共需工程費(fèi)用27720元.乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間是甲隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間的1.5倍,且甲隊(duì)每天的工程費(fèi)用比乙隊(duì)多250元.
(1)求甲、乙兩隊(duì)單獨(dú)完成這項(xiàng)工程各需多少天?
(2)若工程管理部門(mén)決定從這兩個(gè)隊(duì)中選一個(gè)隊(duì)單獨(dú)完成此項(xiàng)工程,從節(jié)約資金的角度考慮,應(yīng)選擇哪個(gè)工程隊(duì)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E,F(xiàn)分別在邊CD,BC上,且∠EAF=45°,BD分別交AE,AF于點(diǎn)M,N,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧BD.下列結(jié)論:①DE+BF=EF;②BN2+DM2=MN2;③△AMN∽△AFE;④ 與EF相切;⑤EF∥MN.其中正確結(jié)論的個(gè)數(shù)是( )
A.5個(gè)
B.4個(gè)
C.3個(gè)
D.2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是△ABC的角平分線,點(diǎn)E,F(xiàn)分別在BC,AB上,且DE∥AB,BE=AF.
(1)求證:四邊形ADEF是平行四邊形;
(2)若∠ABC=60°,BD=4,求平行四邊形ADEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=a(x﹣m)2﹣a(x﹣m)(a,m為常數(shù),且a≠0).
(1)求證:不論a與m為何值,該函數(shù)的圖象與x軸總有兩個(gè)公共點(diǎn);
(2)設(shè)該函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)為A(x1 , 0),B(x2 , 0),且x12+x22=25,求m的值;
(3)設(shè)該函數(shù)的圖象的頂點(diǎn)為C,與x軸交于A,B兩點(diǎn),且△ABC的面積為1,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】旋轉(zhuǎn)變換是解決數(shù)學(xué)問(wèn)題中一種重要的思想方法,通過(guò)旋轉(zhuǎn)變換可以將分散的條件集中到一起,從而方便解決問(wèn)題.已知,中,,,點(diǎn)、在邊上,且.
(1)如圖,當(dāng)時(shí),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到的位置,連接,
①求的度數(shù);
②求證:;
(2)如圖,當(dāng)時(shí),猜想、、的數(shù)量關(guān)系,并說(shuō)明理由;
(3)如圖,當(dāng),,時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形AB1C1D1的邊長(zhǎng)為1,∠B1=60°;作AD2⊥B1C1于點(diǎn)D2 , 以AD2為一邊,做第二個(gè)菱形AB2C2D2 , 使∠B2=60°;作AD3⊥B2C2于點(diǎn)D3 , 以AD3為一邊做第三個(gè)菱形AB3C3D3 , 使∠B3=60°…依此類推,這樣做的第n個(gè)菱形ABnCnDn的邊ADn的長(zhǎng)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)你補(bǔ)全證明過(guò)程:如圖,DG⊥BC,AC⊥BC,EF⊥AB,∠1=∠2,求證:EF∥CD
證明:∵DG⊥BC,AC⊥BC(已知)
∴∠DGB=90°,∠ACB=90°①( )
∴∠DGB=∠ACB ②( )
∴DG∥AC ③( )
∴∠2= ④________ ⑤( )
又∠1=∠2 ⑥( )
∴∠1=∠DCA ⑦( )
∴EF∥CD ⑧( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,解決下列問(wèn)題:
材料一:對(duì)非負(fù)實(shí)數(shù)x“四舍五入”到個(gè)位的值記為,即:當(dāng)n為非負(fù)整數(shù)時(shí),如果,則;反之,當(dāng)n為非負(fù)整數(shù)時(shí),如果;則,例如:,,,
材料二:平面直角坐標(biāo)系中任意兩點(diǎn),,我們把叫做、兩點(diǎn)間的折線距離,并規(guī)定若是一定點(diǎn),是直線上的一動(dòng)點(diǎn),我們把的最小值叫做到直線的折線距離,例如:若,則.
如果,寫(xiě)出實(shí)數(shù)x的取值范圍;已知點(diǎn),點(diǎn),且,求a的值.
若m為滿足的最大值,求點(diǎn)到直線的折線距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com