【題目】如圖,在ABCD中,點(diǎn)O是邊BC的中點(diǎn),連接DO并延長(zhǎng),交AB延長(zhǎng)線于點(diǎn)E,連接BD,EC.
(1)求證:四邊形BECD是平行四邊形;
(2)若∠A=50°,則當(dāng)∠BOD= ______ °時(shí),四邊形BECD是矩形.
【答案】(1)證明見解析;(2)100
【解析】(1)證明:∵四邊形ABCD為平行四邊形,∴AB∥DC,AB=CD,∴∠OEB=∠ODC,又∵O為BC的中點(diǎn),∴BO=CO,在△BOE和△COD中,∵∠OEB=∠ODC,∠BOE=∠COD,BO=CO,∴△BOE≌△COD(AAS);
∴OE=OD,∴四邊形BECD是平行四邊形;
(2)解:若∠A=50°,則當(dāng)∠BOD=100°時(shí),四邊形BECD是矩形.理由如下:
∵四邊形ABCD是平行四邊形,∴∠BCD=∠A=50°,∵∠BOD=∠BCD+∠ODC,∴∠ODC=100°﹣50°=50°=∠BCD,∴OC=OD,∵BO=CO,OD=OE,∴DE=BC,∵四邊形BECD是平行四邊形,∴四邊形BECD是矩形;
故答案為:100.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,∠B=30°,∠C=45°,AC=2,
求:(1)AB的長(zhǎng)為________;
(2)S△ABC=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某校開展了以“夢(mèng)想中國(guó)”為主題的攝影大賽,要求參賽學(xué)生每人交一件作品.現(xiàn)將從中挑選的50件參賽作品的成績(jī)(單位:分)統(tǒng)計(jì)如下:
等級(jí) | 成績(jī)(用m表示) | 頻數(shù) | 頻率 |
A | 90≤m≤100 | x | 0.08 |
B | 80≤m<90 | 34 | y |
C | m<80 | 12 | 0.24 |
合計(jì) | 50 | 1 |
請(qǐng)根據(jù)上表提供的信息,解答下列問(wèn)題:
(1)表中x的值為 , y的值為;(直接填寫結(jié)果)
(2)將本次參賽作品獲得A等級(jí)的學(xué)生依次用A1、A2、A3…表示.現(xiàn)該校決定從本次參賽作品獲得A等級(jí)的學(xué)生中,隨機(jī)抽取兩名學(xué)生談?wù)勊麄兊膮①愺w會(huì),則恰好抽到學(xué)生A1和A2的概率為 . (直接填寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,出租車是人們出行的一種便利交通工具,折線ABC是在我市乘出租車所付車費(fèi)y(元)與行車?yán)锍?/span>x(km)之間的函數(shù)關(guān)系圖象.
(1)根據(jù)圖象,當(dāng)x≥3時(shí)y為x的一次函數(shù),請(qǐng)寫出函數(shù)關(guān)系式;
(2)某人乘坐13km,應(yīng)付多少錢?
(3)若某人付車費(fèi)42元,出租車行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)將下列證明過(guò)程補(bǔ)充完整:
已知:如圖,點(diǎn)P在CD上,已知∠BAP+∠APD=180°,∠1=∠2
求證:∠E=∠F
證明:∵∠BAP+∠APD=180°(已知)
∴ ∥ ( )
∴∠BAP= ( )
又∵∠1=∠2(已知)
∴∠BAP﹣ = ﹣∠2
即∠3= (等式的性質(zhì))
∴AE∥PF( )
∴∠E=∠F( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,半圓O的直徑AB=10cm,弦AC=6cm,AD平分∠BAC,則AD的長(zhǎng)為( )
A. cm
B. cm
C. cm
D.4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l與⊙相切于點(diǎn)D,過(guò)圓心O作EF∥l交⊙O于E、F兩點(diǎn),點(diǎn)A是⊙O上一點(diǎn),連接AE,AF,并分別延長(zhǎng)交直線于B、C兩點(diǎn);若⊙的半徑R=5,BD=12,則∠ACB的正切值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l與⊙相切于點(diǎn)D,過(guò)圓心O作EF∥l交⊙O于E、F兩點(diǎn),點(diǎn)A是⊙O上一點(diǎn),連接AE,AF,并分別延長(zhǎng)交直線于B、C兩點(diǎn);若⊙的半徑R=5,BD=12,則∠ACB的正切值為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com