【題目】如圖,在中,,,延長線上一點(diǎn),點(diǎn)上,且

1)求證:

2)若,求的度數(shù).

【答案】(1)見解析;(2) 70°

【解析】

1)由AB=CB,∠ABC=90°,AE=CF,即可利用HL證得RtABERtCBF;
2)由AB=CB,∠ABC=90°,即可求得∠CAB與∠ACB的度數(shù),即可得∠BAE的度數(shù),又由RtABERtCBF,即可求得∠BCF的度數(shù),則由∠ACF=BCF+ACB即可求得答案.

1)證明:∵∠ABC=90°,∴∠CBF=ABE=90°,

RtABERtCBF中,

,

RtABERtCBFHL);

2)解:∵AB=BC,∠ABC=90°,∴∠CAB=ACB=45°,

又∵∠BAE=CAB﹣∠CAE=45°20°=25°,由(1)知:RtABERtCBF

∴∠BCF=BAE=25°,∴∠ACF=BCF+ACB=45°+25°=70°

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,,點(diǎn)在射線上,

1)如圖 1,若,求的度數(shù);

2)把°”改為,射線 沿射線 平移,得到,其它條件不變(如 2 所示),探究 的數(shù)量關(guān)系;

3)在(2)的條件下,作,垂足為 ,與 的角平分線 交于點(diǎn),若 , 用含 α 的式子表示(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:如圖所示是每一個(gè)小方格都是邊長為1的正方形網(wǎng)格,

(1)利用網(wǎng)格線作圖:

①在上找一點(diǎn)P,使點(diǎn)P的距離相等;

②在射線上找一點(diǎn)Q,使.

(2)(1)中連接,試說明是直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為了科學(xué)建設(shè)“學(xué)生健康成長工程”,隨機(jī)抽取了部分學(xué)生家庭對其家長進(jìn)行了主題“周末孩子在家您關(guān)心了嗎?”的調(diào)查問卷,將收回的調(diào)查問卷進(jìn)行了分析整理,得到了如下的樣本統(tǒng)計(jì)圖表和扇形統(tǒng)計(jì)圖:

代號

情況分類

家庭數(shù)

A

帶孩子玩且關(guān)心其作業(yè)完成情況

8

B

只關(guān)心其作業(yè)完成情況

m

C

只帶孩子玩

4

D

既不帶孩子玩也不關(guān)心其作業(yè)完成情況

n


(1)求m,n的值;
(2)該校學(xué)生家庭總數(shù)為500,學(xué)校決定按比例在B、C、D類家庭中抽取家長組成培訓(xùn)班,其比例為B類20%,C、D類各取60%,請你估計(jì)該培訓(xùn)班的家庭數(shù);
(3)若在C類家庭中只有一個(gè)是城鎮(zhèn)家庭,其余是農(nóng)村家庭,請用列舉法求出C類中隨機(jī)抽出2個(gè)家庭進(jìn)行深度家訪,其中有一個(gè)是城鎮(zhèn)家庭的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請你根據(jù)如圖所示的阿寶與仙鶴的對話,解答下列問題:

1)仙鶴為什么說多邊形內(nèi)角和的度數(shù)不可能是;

2)若圖中仙鶴所提到的外角的度數(shù)為,請分別求仙鶴所畫的多邊形的內(nèi)角和的度數(shù)與邊數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:在平面直角坐標(biāo)系中,點(diǎn)A、B的坐標(biāo)分別是(a,0),(b,0)且+|b-2|=0.
(1)求ab的值;
(2)在y軸上是否存在點(diǎn)C,使三角形ABC的面積是12?若存在,求出點(diǎn)C的坐標(biāo);若不存在,請說明理由.
(3)已知點(diǎn)P是y軸正半軸上一點(diǎn),且到x軸的距離為3,若點(diǎn)P沿平行于x軸的負(fù)半軸方向以每秒1個(gè)單位長度平移至點(diǎn)Q,當(dāng)運(yùn)動(dòng)時(shí)間t為多少秒時(shí),四邊形ABPQ的面積S為15個(gè)平方單位?寫出此時(shí)點(diǎn)Q的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P為定角∠AOB的平分線上的一個(gè)定點(diǎn),且∠MPN∠AOB互補(bǔ),若∠MPN在繞點(diǎn)P旋轉(zhuǎn)的過程中,其兩邊分別與OAOB相交于M、N兩點(diǎn),則以下結(jié)論:(1PM=PN恒成立;(2OM+ON的值不變;(3)四邊形PMON的面積不變;(4MN的長不變,其中正確的個(gè)數(shù)為( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有四張正面分別標(biāo)有數(shù)字2,1,﹣3,﹣4的不透明卡片,它們除數(shù)字外其余全部相同,現(xiàn)將它們背面朝上,洗勻后從四張卡片中隨機(jī)地摸取一張不放回,將該卡片上的數(shù)字記為m,再隨機(jī)地摸取一張,將卡片上的數(shù)字記為n.
(1)請畫出樹狀圖并寫出(m,n)所有可能的結(jié)果;
(2)求所選出的m,n能使一次函數(shù)y=mx+n的圖象經(jīng)過第二、三、四象限的概率.

查看答案和解析>>

同步練習(xí)冊答案