【題目】作圖題:如圖所示是每一個(gè)小方格都是邊長(zhǎng)為1的正方形網(wǎng)格,

(1)利用網(wǎng)格線作圖:

①在上找一點(diǎn)P,使點(diǎn)P的距離相等;

②在射線上找一點(diǎn)Q,使.

(2)(1)中連接,試說明是直角三角形.

【答案】(1)①詳見解析;②詳見解析;(2)詳見解析

【解析】

1)根據(jù)網(wǎng)格特點(diǎn)作出∠A的角平分線與BC的交點(diǎn)就是點(diǎn)PBC的垂直平分線與AP的交點(diǎn)就是點(diǎn)Q

2)首先利用勾股定理計(jì)算出CQ2、BQ2BC2,然后利用勾股定理逆定理可得△CBQ是直角三角形

1)點(diǎn)P就是所要求作的到ABAC的距離相等的點(diǎn),點(diǎn)Q就是所要求作的使QB=QC的點(diǎn)

2)連接CQBQ

CQ2=12+52=26,BQ2=12+52=26,BC2=62+42=36+16=52CQ2+BQ2=BC2,∴∠CQB=90°,∴△CBQ是直角三角形

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎自行車從A地出發(fā)前往B地,同時(shí)乙步行從B地出發(fā)前往A地,如圖的折線OPQ和線段EF,分表表示甲、乙兩人與A地的距離、與他們所行時(shí)間之間的函數(shù)關(guān)系,且OPEF相交于點(diǎn)M

求線段OP對(duì)應(yīng)的x的函數(shù)關(guān)系式;

x的函數(shù)關(guān)系式以及A,B兩地之間的距離;

求經(jīng)過多少小時(shí),甲、乙兩人相距3km

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)y=ax2+bx+c(a<0)的圖象如圖所示,且關(guān)于x的方程ax2+bx+c=k有兩個(gè)不相等的實(shí)根,則常數(shù)k的取值范圍是( )

A.0<k<4
B.﹣3<k<1
C.k<﹣3或k>1
D.k<4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點(diǎn)DBC的中點(diǎn).

(1)如圖①,若點(diǎn)E、F分別為AB、AC上的點(diǎn),且DEDF,求證:BE=AF;

(2)若點(diǎn)E、F分別為AB、CA延長(zhǎng)線上的點(diǎn),且DEDF,那么BE=AF嗎?請(qǐng)利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題,如圖,正方形ABCD。
(1)請(qǐng)?jiān)趫D①中作兩條直線,使它們將正方形ABCD的面積三等分;

(2)如圖②,在矩形ABCD中,AB=6,BC=9,在圖②中過頂點(diǎn)A作兩條直線,使它們將矩形ABCD的面積三等分,井說明理由;

(3)如圖③,農(nóng)博園有一塊不規(guī)則的五邊形ABCDE空地,其中AB∥CD、AE∥BC,AB=AC=100米,AE=160米,BC=120米,CD=62.5米,根據(jù)視覺效果和花期特點(diǎn),農(nóng)博園設(shè)計(jì)部門想在這片空地種上等面積的三種不同的花,要求從入口A點(diǎn)處修兩條筆直的小路(小路的面積忽略不計(jì))方便游客賞花,兩條小路將這塊地面積三等分.請(qǐng)通過計(jì)算畫圖說明其設(shè)計(jì)部們能否實(shí)現(xiàn),若能實(shí)現(xiàn)請(qǐng)確定小路盡頭的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一圓錐的左視圖,根據(jù)圖中所標(biāo)數(shù)據(jù),圓錐側(cè)面展開圖的扇形圓心角的大小為( )

A.90°
B.120°
C.135°
D.150°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,花果山上有兩只猴子在一棵樹CD上的點(diǎn)B處,且BC=5m,它們都要到A處吃東西,其中一只猴子甲沿樹爬下走到離樹10m處的池塘A處,另一只猴子乙先爬到樹頂D處后再沿纜繩DA線段滑到A處.已知兩只猴子所經(jīng)過的路程相等,設(shè)BDxm

1)請(qǐng)用含有x整式表示線段AD的長(zhǎng)為______m;

2)求這棵樹高有多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,延長(zhǎng)線上一點(diǎn),點(diǎn)上,且

1)求證:;

2)若,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,D為OA半徑的中點(diǎn),過D作CD⊥OA交弦AB于點(diǎn)E,交⊙O于點(diǎn)F,且CE=CB.

(1)求證:BC是⊙O的切線;
(2)連接AF、BF,求∠ABF的度數(shù);
(3)如果BE=10,sinA= ,求⊙O的半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案