【題目】在平面直角坐標(biāo)系xOy中,將拋物線(m≠0)向右平移個(gè)單位長度后得到拋物線G2,點(diǎn)A是拋物線G2的頂點(diǎn).
(1)直接寫出點(diǎn)A的坐標(biāo);
(2)過點(diǎn)(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點(diǎn).
①當(dāng)∠BAC=90°時(shí).求拋物線G2的表達(dá)式;
②若60°<∠BAC<120°,直接寫出m的取值范圍.
【答案】(1)(,2);(2)①y=(x-)2+2;②
【解析】
(1)先求出平移后是拋物線G2的函數(shù)解析式,即可求得點(diǎn)A的坐標(biāo);
(2)①由(1)可知G2的表達(dá)式,首先求出AD的值,利用等腰直角的性質(zhì)得出BD=AD=,從而求出點(diǎn)B的坐標(biāo),代入即可得解;
②分別求出當(dāng)∠BAC=60°時(shí),當(dāng)∠BAC=120°時(shí)m的值,即可得出m的取值范圍.
(1)∵將拋物線G1:y=mx2+2(m≠0)向右平移個(gè)單位長度后得到拋物線G2,
∴拋物線G2:y=m(x-)2+2,
∵點(diǎn)A是拋物線G2的頂點(diǎn).
∴點(diǎn)A的坐標(biāo)為(,2).
(2)①設(shè)拋物線對稱軸與直線l交于點(diǎn)D,如圖1所示.
∵點(diǎn)A是拋物線頂點(diǎn),
∴AB=AC.
∵∠BAC=90°,
∴△ABC為等腰直角三角形,
∴CD=AD=,
∴點(diǎn)C的坐標(biāo)為(2,).
∵點(diǎn)C在拋物線G2上,
∴=m(2-)2+2,
解得:.
②依照題意畫出圖形,如圖2所示.
同理:當(dāng)∠BAC=60°時(shí),點(diǎn)C的坐標(biāo)為(+1,);
當(dāng)∠BAC=120°時(shí),點(diǎn)C的坐標(biāo)為(+3,).
∵60°<∠BAC<120°,
∴點(diǎn)(+1,)在拋物線G2下方,點(diǎn)(+3,)在拋物線G2上方,
∴,
解得:.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北京時(shí)間2019年4月10日人類首次直接拍攝到黑洞的照片,它是一個(gè)“超巨型”質(zhì)量黑洞,位于室女座星系團(tuán)中一個(gè)超大質(zhì)量星系﹣M87的中心,距離地球5500萬光年.?dāng)?shù)據(jù)“5500萬光年”用科學(xué)記數(shù)法表示為( )
A.5500×104光年B.055×108光年
C.5.5×103光年D.5.5×107光年
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E是邊AB的中點(diǎn),△EBC沿直線EC翻折,使B點(diǎn)落在矩形ABCD內(nèi)部的點(diǎn)P處,聯(lián)結(jié)AP并延長AP交CD于點(diǎn)F,聯(lián)結(jié)BP交CE于點(diǎn)Q.
(1)求證:四邊形AECF是平行四邊形;
(2)如果PA=PE,求證:△APB≌△EPC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)C,B,E在y軸上,Rt△ABC經(jīng)過變化得到Rt△EDO,若點(diǎn)B的坐標(biāo)為(0,1),OD=2,則這種變化可以是( )
A.△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長度
B.△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長度
C.△ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,再向左平移3個(gè)單位長度
D.△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,再向右平移1個(gè)單位長度
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠A=∠BCD=90°,,CE⊥AD于點(diǎn)E.
(1)求證:AE=CE;
(2)若tanD=3,求AB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在ABCD中,點(diǎn)B關(guān)于AD的對稱點(diǎn)為B′,連接AB′,CB′,CB′交AD于F點(diǎn).
(1)如圖1,∠ABC=90°,求證:F為CB′的中點(diǎn);
(2)小宇通過觀察、實(shí)驗(yàn)、提出猜想:如圖2,在點(diǎn)B繞點(diǎn)A旋轉(zhuǎn)的過程中,點(diǎn)F始終為CB′的中點(diǎn).小宇把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:
想法1:過點(diǎn)B′作B′G∥CD交AD于G點(diǎn),只需證三角形全等;
想法2:連接BB′交AD于H點(diǎn),只需證H為BB′的中點(diǎn);
想法3:連接BB′,BF,只需證∠B′BC=90°.
…
請你參考上面的想法,證明F為CB′的中點(diǎn).(一種方法即可)
(3)如圖3,當(dāng)∠ABC=135°時(shí),AB′,CD的延長線相交于點(diǎn)E,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,若P,Q為某個(gè)菱形相鄰的兩個(gè)頂點(diǎn),且該菱形的兩條對角線分別與x軸,y軸平行或重合,則稱該菱形為點(diǎn)P,Q的“相關(guān)菱形”.圖1為點(diǎn)P,Q的“相關(guān)菱形”的一個(gè)示意圖.
已知點(diǎn)A的坐標(biāo)為(1,4),點(diǎn)B的坐標(biāo)為(b,0).
(1)若b=3,則R(﹣1,0),S(5,4),T(6,4)中能夠成為點(diǎn)A,B的“相關(guān)菱形”頂點(diǎn)的是 ;
(2)若點(diǎn)A,B的“相關(guān)菱形”為正方形,求b的值;
(3)⊙B的半徑為,點(diǎn)C的坐標(biāo)為(2,4).若⊙B上存在點(diǎn)M,在線段AC上存在點(diǎn)N,使點(diǎn)M,N的“相關(guān)菱形”為正方形,請直接寫出b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)部分同學(xué)參加全國初中數(shù)學(xué)競賽,取得了優(yōu)異的成績,指導(dǎo)老師統(tǒng)計(jì)了所有參賽同學(xué)的成績(成績都是整數(shù),試題滿分120分),并且繪制了“頻率分布直方圖”(如圖).請回答:
(1)該中學(xué)參加本次數(shù)學(xué)競賽的有多少名同學(xué)?
(2)如果成績在90分以上(含90分)的同學(xué)獲獎(jiǎng),那么該中學(xué)參賽同學(xué)的獲獎(jiǎng)率是多少?
(3)這次競賽成績的中位數(shù)落在哪個(gè)分?jǐn)?shù)段內(nèi)?
(4)圖中還提供了其它信息,例如該中學(xué)沒有獲得滿分的同學(xué)等等,請?jiān)賹懗鰞蓷l信息.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,CD=3cm,BC=4cm,連接BD,并過點(diǎn)C作CN⊥BD,垂足為N,直線l垂直BC,分別交BD、BC于點(diǎn)P、Q.直線l從AB出發(fā),以每秒1cm的速度沿BC方向勻速運(yùn)動(dòng)到CD為止;點(diǎn)M沿線段DA以每秒1cm的速度由點(diǎn)D向點(diǎn)A勻速運(yùn)動(dòng),到點(diǎn)A為止,直線1與點(diǎn)M同時(shí)出發(fā),設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0).
(1)線段CN= ;
(2)連接PM和QN,當(dāng)四邊形MPQN為平行四邊形時(shí),求t的值;
(3)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí)△PMN的面積取得最大值,最大值是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com