【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)C,BEy軸上,RtABC經(jīng)過變化得到RtEDO,若點(diǎn)B的坐標(biāo)為(01),OD2,則這種變化可以是(

A.ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長度

B.ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,再向下平移5個(gè)單位長度

C.ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,再向左平移3個(gè)單位長度

D.ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,再向右平移1個(gè)單位長度

【答案】C

【解析】

RtABC通過變換得到RtODE,應(yīng)先旋轉(zhuǎn)然后平移即可

RtABC經(jīng)過變化得到RtEDO,點(diǎn)B的坐標(biāo)為(0,1),OD2,

DOBC2,CO3

∴將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,再向下平移3個(gè)單位長度,即可得到DOE;

或?qū)?/span>ABC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,再向左平移3個(gè)單位長度,即可得到DOE

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線與x軸交于點(diǎn)A(1,0),與 y交于點(diǎn)B(0,-2).

(1)求直線AB的表達(dá)式;

(2)點(diǎn)C是直線AB上的點(diǎn),且CA=AB,過動(dòng)點(diǎn)P(m,0)且垂直于x軸的直線與直線AB 交于點(diǎn)D,若點(diǎn)D不在線段BC上,寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,∠B=30°,AC=2.作△ABC的高CD,作△CDB的高DC1,作△DC1B的高C1D1,……,如此下去,那么得到的所有陰影三角形的面積之和為__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點(diǎn),沿EC對折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,聯(lián)結(jié)AP并延長APCDF點(diǎn),

1)求證:四邊形AECF為平行四邊形;

2)如果PA=PC,聯(lián)結(jié)BP,求證:△APBEPC

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年中國北京世界園藝博覽會(huì)已于2019429日在北京市延慶區(qū)開展,吸引了大批游客參觀游覽.五一小長假期間平均每天入園人數(shù)大約是8萬人,佳佳等5名同學(xué)組成的學(xué)習(xí)小組,隨機(jī)調(diào)查了五一假期中入園參觀的部分游客,獲得了他們在園內(nèi)參觀所用時(shí)間,并對數(shù)據(jù)進(jìn)行整理,描述和分析,下面給出了部分信息:

a.參觀時(shí)間的頻數(shù)分布表如下:

時(shí)間(時(shí))

頻數(shù)(人數(shù))

頻率

25

0.050

85

160

0.320

139

0.278

0.100

41

0.082

合計(jì)

1.000

b.參觀時(shí)間的頻數(shù)分布直方圖如圖:

根據(jù)以上圖表提供的信息,解答下列問題:

1)這里采用的調(diào)查方式是   ;

2)表中      ,   ;

3)并請補(bǔ)全頻數(shù)分布直方圖;

4)請你估算五一假期中平均每天參觀時(shí)間小于4小時(shí)的游客約有多少萬人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小林在沒有量角器和圓規(guī)的情況下,利用刻度尺和一副三角板畫出了一個(gè)角的平分線,他的作法是這樣的:如圖:

1)利用刻度尺在∠AOB的兩邊OA,OB上分別取OMON;

2)利用兩個(gè)三角板,分別過點(diǎn)MNOMON的垂線,交點(diǎn)為P;

3)畫射線OP

則射線OP為∠AOB的平分線.請寫出小林的畫法的依據(jù)______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,將拋物線m≠0)向右平移個(gè)單位長度后得到拋物線G2,點(diǎn)A是拋物線G2的頂點(diǎn).

1)直接寫出點(diǎn)A的坐標(biāo);

2)過點(diǎn)(0,)且平行于x軸的直線l與拋物線G2交于B,C兩點(diǎn).

①當(dāng)∠BAC90°時(shí).求拋物線G2的表達(dá)式;

②若60°<∠BAC120°,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2(m﹣1)x+m2﹣3=0有兩個(gè)不相等的實(shí)數(shù)根.

(1)求m的取值范圍;

(2)若m為非負(fù)整數(shù),且該方程的根都是無理數(shù),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與x軸、y軸分別交于A、C兩點(diǎn),與反比例函數(shù)的圖象交于B點(diǎn),B點(diǎn)在第四象限,BD垂直平分OA,垂足為DOB,OABD

1)求該一次函數(shù)和反比例函數(shù)的解析式;

2)延長BO交反比例函數(shù)的圖象于點(diǎn)E,連接ED、EC,求四邊形BCED的面積.

查看答案和解析>>

同步練習(xí)冊答案