【題目】如圖,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6BC=4AB邊上有一動(dòng)點(diǎn)P(不與A、B重合),連結(jié)DP,作PQ⊥DP,使得PQ交射線BC于點(diǎn)E,設(shè)AP=x

當(dāng)x為何值時(shí),△APD是等腰三角形?

若設(shè)BE=y,求y關(guān)于x的函數(shù)關(guān)系式;

BC的長(zhǎng)可以變化,在現(xiàn)在的條件下,是否存在點(diǎn)P,使得PQ經(jīng)過(guò)點(diǎn)C?若存在,求出相應(yīng)的AP的長(zhǎng);若不存在,請(qǐng)說(shuō)明理由,并直接寫(xiě)出當(dāng)BC的長(zhǎng)在什么范圍內(nèi)時(shí),可以存在這樣的點(diǎn)P,使得PQ經(jīng)過(guò)點(diǎn)C

【答案】

【解析】

解:過(guò)D點(diǎn)作DHABH,

則四邊形DHBC為矩形,

DH=BC=4,HB=CD=6 ∴AH=2,AD=2…………………1

AP=x, PH=x2

情況:當(dāng)AP=AD時(shí),即x=2……………………………2

情況:當(dāng)AD=PD時(shí),則AH=PH

∴2=x2,解得x= 4………………………………………………………·3

情況:當(dāng)AP=PD時(shí),

RtDPH中,x2=42+(x2)2,解得x=5…………………………………4

∵2<x<8,當(dāng)x24、5時(shí),APD是等腰三角形…………………………5

易證:DPH∽△PEB ………………………………………………………………7

,整理得:y=(x2)(8x)=x2+x4………8

若存在,則此時(shí)BE=BC=4,即y=x2+x4=4,整理得:x210x+32=0

∵△=(10)24×32<0,原方程無(wú)解,……………………………………………9

不存在點(diǎn)P,使得PQ經(jīng)過(guò)點(diǎn)C……………………………………………………10

當(dāng)BC滿足0BC≤3時(shí),存在點(diǎn)P,使得PQ經(jīng)過(guò)點(diǎn)C……………………………12

1、過(guò)D點(diǎn)作DH⊥ABH,則四邊形DHBC為矩形,在Rt△AHD中,由勾股定理可求得DH、ADPH的值,若△ADP為等腰三角形,則分三種情況:當(dāng)AP=AD時(shí),x=AP=AD,當(dāng)AD=PD時(shí),有AH=PH,故x=AH+PH,當(dāng)AP=PD時(shí),則在Rt△DPH中,由勾股定理可求得DP的值,有x=AP=DP

2、易證:△DPH∽△PEB,即,故可求得yx的關(guān)系式.

3、利用△DPH∽△PEB,得出,進(jìn)而利用根的判別式和一元二次不等式解集得出即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問(wèn):按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫(huà)樹(shù)狀圖法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在學(xué)習(xí)蘇科版九下《銳角三角函數(shù)》一章時(shí),小明同學(xué)對(duì)一個(gè)角的倍角的三角函數(shù)值是否具有關(guān)系產(chǎn)生了濃厚的興趣,進(jìn)行了一些研究.

(1)初步嘗試:我們知道:tan60°=   ,tan30°=   ,發(fā)現(xiàn)結(jié)論:tanA   2tanA(填“=”或“≠”);

(2)實(shí)踐探究:如圖1,在Rt△ABC中,∠C=90°,AC=2,BC=1,求tanA的值;小明想構(gòu)造包含A的直角三角形:延長(zhǎng)CAD,使得DAAB,連接BD,所以得到∠DA,即轉(zhuǎn)化為求∠D的正切值.

請(qǐng)按小明的思路進(jìn)行余下的求解:

(3)拓展延伸:如圖2,在Rt△ABC中,∠C=90°,AC=3,tanA

①tan2A   ;

tan3A的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為4的正方形ABCD中,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向B點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿BC→CD方向運(yùn)動(dòng),當(dāng)P運(yùn)動(dòng)到B點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng).設(shè)P點(diǎn)運(yùn)動(dòng)的時(shí)間為t,APQ的面積為S,則S與t的函數(shù)關(guān)系的圖象是【 】

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)yax2﹣(2a+1)x+ca>0)的圖象經(jīng)過(guò)坐標(biāo)原點(diǎn)O,一次函數(shù)y=﹣x+4x軸、y軸分別交于點(diǎn)AB

(1)c   ,點(diǎn)A的坐標(biāo)為   

(2)若二次函數(shù)yax2﹣(2a+1)x+c的圖象經(jīng)過(guò)點(diǎn)A,求a的值;

(3)若二次函數(shù)yax2﹣(2a+1)x+c的圖象與AOB只有一個(gè)公共點(diǎn),直接寫(xiě)出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】反比例函數(shù)在第一象限的圖象如圖所示,過(guò)點(diǎn)A(1,0)作x軸的垂線,交反比例函數(shù)的圖象于點(diǎn)M,AOM的面積為3.

(1)求反比例函數(shù)的解析式;

(2)設(shè)點(diǎn)B的坐標(biāo)為(t,0),其中t>1.若以AB為一邊的正方形有一個(gè)頂點(diǎn)在反比例函數(shù)的圖象上,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線的頂點(diǎn)為A(0,1),矩形CDEF的頂點(diǎn)C、F在拋物線上,點(diǎn)D、Ex軸上,CFy軸于點(diǎn)B(0,2),且矩形其面積為8,此拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知菱形ABCD兩條對(duì)角線BDAC的長(zhǎng)之比為3:4,周長(zhǎng)為40cm,求菱形的高及面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD,DE交BC于F,交AB的延長(zhǎng)線于E,且EDB=C.

(1)求證:ADEDBE;

(2)若DE=9cm,AE=12cm,求DC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案