【題目】已知拋物線.
(1)求證:無論為任何實數(shù),拋物線與軸總有兩個交點;
(2)若A、B是拋物線上的兩個不同點,求拋物線的表達式和的值;
(3)若反比例函數(shù)的圖象與(2)中的拋物線在第一象限內(nèi)的交點的橫坐標為,且滿足2<<3,求k的取值范圍.
【答案】(2),(3)5<k<18
【解析】
試題分析:(1)根據(jù)拋物線的圖像與性質(zhì)可知其與x軸交點的判定條件是,因此可由判別式得證結(jié)果;
(2)根據(jù)題意可求得拋物線的對稱軸,且有A,B的點可判斷它們是對稱點,根據(jù)對稱性可求出m的值,求得拋物線的解析式,然后把A點的坐標代入解析式可求得n的值;
(3)根據(jù)二次函數(shù)的增減性以及反比例函數(shù)的圖像與性質(zhì),可以判斷出兩函數(shù)之間的大小關(guān)系,構(gòu)成不等式,從而解出k的取值范圍.
試題解析:(1)證明:令.
得.
不論m為任何實數(shù),都有(m-1)2+3>0,即△>0.
∴不論m為任何實數(shù),拋物線與x軸總有兩個交點.
(2)解:拋物線的對稱軸為
∵拋物線上兩個不同點A、B的縱坐標相同,
∴點A和點B關(guān)于拋物線的對稱軸對稱,則.
∴.
∴拋物線的解析式為.
∵A在拋物線上,
∴.
化簡,得.
∴ .
(3)當2<<3時,對于,y隨著x的增大而增大,
對于,y隨著x的增大而減小.
所以當時,由反比例函數(shù)圖象在二次函數(shù)圖象上方,得>,
解得k>5.
當時,由二次函數(shù)圖象在反比例函數(shù)圖象上方,得>,
解得k<18.
所以k的取值范圍為5<k<18.
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)前夕,小東媽媽準備購買若干個粽子和咸鴨蛋(每個棕子的價格相同,每個咸鴨蛋的價格相同).已知某超市粽子的價格比咸鴨蛋的價格貴1.8元,小東媽媽發(fā)現(xiàn),花30元購買粽子的個數(shù)與花12元購買的咸鴨蛋個數(shù)相同.
(1)求該超市粽子與咸鴨蛋的價格各是多少元?
(2)小東媽媽計劃購買粽子與咸鴨蛋共18個,她的一張購物卡上還有余額40元,若只用這張購物卡,她最多能購買粽子多少個?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在菱形ABCD中,∠A=60°,AD=,點P是對角線AC上的一個動點,過點P作EF⊥AC交CD于點E,交AB于點F,將△AEF沿EF折疊點A落在G處,當△CGB為等腰三角形時,則AP的長為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,小慧同學把一個正三角形紙片(即△OAB)放在直線l1上。OA邊與直線l1重合,然后將三角形紙片繞著頂點A按順時針方向旋轉(zhuǎn)120°,此時點O運動到了點O1處,點B運動到了點B1處;小慧又將三角形紙片AO1B1,繞點B1按順時針方向旋轉(zhuǎn)120°,此時點A運動到了點A1處,點O1運動到了點O2處(即頂點O經(jīng)過上述兩次旋轉(zhuǎn)到達O2處)。小慧還發(fā)現(xiàn):三角形紙片在上述兩次旋轉(zhuǎn)的過程中,頂點O運動所形成的圖形是兩段圓弧,即和,頂點O所經(jīng)過的路程是這兩段圓弧的長度之和,并且這兩段圓弧與直線l1圍成的圖形面積等于扇形的面積、△AO1B1的面積和扇形B1O1O2的面積之和。
小慧進行類比研究:如圖②,她把邊長為1的正方形紙片OABC放在直線l2上,OA邊與直線l2重合,然后將正方形紙片繞著頂點A按順時針方向旋轉(zhuǎn)90°,此時點O運動到了點O1處(即點B處),點C運動到了點C1處,點B運動到了點B2處,小慧又將正方形紙片AO1C1B1繞頂點B1按順時針方向旋轉(zhuǎn)90°,…。按上述方法經(jīng)過若干次旋轉(zhuǎn)后,她提出了如下問題:
問題①:若正方形紙片OABC按上述方法經(jīng)過3次旋轉(zhuǎn),求頂點O經(jīng)過的路程,并求頂點O在此運動過程中所形成的圖形與直線l2圍成圖形的面積;若正方形紙片OABC按上述方法經(jīng)過5次旋轉(zhuǎn),求頂點O經(jīng)過的路程;
問題②:正方形紙片OABC按上述方法經(jīng)過多少次旋轉(zhuǎn),頂點O經(jīng)過的路程是?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①為Rt△AOB,∠AOB=90°,其中OA=3,OB=4.將AOB沿x軸依次以A,B,O為旋轉(zhuǎn)中心順時針旋轉(zhuǎn).分別得圖②,圖③,…,則旋轉(zhuǎn)到圖⑩時直角頂點的坐標是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于P,Q兩點給出如下定義:若點P到x,y軸的距離中的最大值等于點Q到x,y軸的距離中的最大值,則稱P,Q兩點為“等距點”圖中的P,Q兩點即為“等距點”.
(1)已知點A的坐標為.①在點中,為點A的“等距點”的是________;②若點B的坐標為,且A,B兩點為“等距點”,則點B的坐標為________.
(2)若兩點為“等距點”,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A點的坐標是(3,3),AB⊥x軸于點B,反比例函數(shù)y=的圖象中的一支經(jīng)過線段OA上一點M,交AB于點N,已知OM=2AM.
(1)求反比例函數(shù)的解析式;
(2)若直線MN交y軸于點C,求△OMC的面積。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,線段AD=10cm,點B,C都是線段AD上的點,且AC=7cm,BD=4cm,若E,F分別是線段AB,CD的中點,求BC與EF的長度.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com