【題目】如圖, 的直角邊 上一點(diǎn),以 為半徑的 與斜邊 相切于點(diǎn) ,交 于點(diǎn) .已知 ,

(1)求 的長(zhǎng);
(2)求圖中陰影部分的面積.

【答案】
(1)

解:在Rt△ABC中,AB= = =2 .

∵BC⊥OC

∴BC是⊙O的切線

又∵AB是⊙O的切線

∴BD=BC=

∴AD=AB-BD=


(2)

解:在Rt△ABC中,sinA= ==.

∴∠A=30°.

∵AB切⊙O于點(diǎn)D.

∴OD⊥AB.

∴∠AOD=90°-∠A=60°.

=tanA=tan30°.

=.

∴OD=1.

S陰影==.


【解析】(1)在Rt△ABC中,利用勾股定理求出AB的長(zhǎng),然后根據(jù)切線的判定證出BC為切線,然后可根據(jù)切線長(zhǎng)定理可求解.
(2)在Rt△ABC中,根據(jù)∠A的正弦求出∠A度數(shù),然后根據(jù)切線的性質(zhì)求出OD的長(zhǎng),和扇形圓心角的度數(shù),再根據(jù)扇形的面積公式可求解.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解勾股定理的概念(直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2),還要掌握切線的性質(zhì)定理(切線的性質(zhì):1、經(jīng)過(guò)切點(diǎn)垂直于這條半徑的直線是圓的切線2、經(jīng)過(guò)切點(diǎn)垂直于切線的直線必經(jīng)過(guò)圓心3、圓的切線垂直于經(jīng)過(guò)切點(diǎn)的半徑)的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:已知正方形的邊長(zhǎng)為a,將此正方形按照下面的方法進(jìn)行剪拼:第一次,先沿正方形的對(duì)邊中點(diǎn)連線剪開,然后對(duì)接為一個(gè)長(zhǎng)方形,則此長(zhǎng)方形的周長(zhǎng)為___;第二次,再沿長(zhǎng)方形的對(duì)邊(長(zhǎng)方形的寬)中點(diǎn)連線剪開,對(duì)接為新的長(zhǎng)方形,如此繼續(xù)下去,第n次得到的長(zhǎng)方形的周長(zhǎng)為__

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為降低空氣污染,啟東飛鶴公交公司決定全部更換節(jié)能環(huán)保的燃?xì)夤卉嚕?jì)劃購(gòu)買A型和B型兩種公交車共10輛,其中每臺(tái)的價(jià)格,年載客量如表:

A

B

價(jià)格(萬(wàn)元/臺(tái))

a

b

年載客量(萬(wàn)人/年)

60

100

若購(gòu)買A型公交車1輛,B型公交車2輛,共需400萬(wàn)元;若購(gòu)買A型公交車2輛,B型公交車1輛,共需350萬(wàn)元.

(1)求a,b的值;

(2)如果該公司購(gòu)買A型和B型公交車的總費(fèi)用不超過(guò)1200萬(wàn)元,且確保這10輛公交車在該線路的年均載客總和不少于680萬(wàn)人次.請(qǐng)你設(shè)計(jì)一個(gè)方案,使得購(gòu)車總費(fèi)用最少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC為等邊三角形,點(diǎn)D由點(diǎn)C出發(fā),在BC的延長(zhǎng)線上運(yùn)動(dòng),連結(jié)AD,以AD為邊作等邊三角形ADE,連結(jié)CE

(1)請(qǐng)寫出AC、CD、CE之間的數(shù)量關(guān)系,并證明;

(2)若AB=6cm,點(diǎn)D的運(yùn)動(dòng)速度為每秒2cm,運(yùn)動(dòng)時(shí)間為t秒,則t為何值時(shí),CEAD?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于任意實(shí)數(shù) ,定義關(guān)于“ ”的一種運(yùn)算如下: .例如: ,
(1)若 ,求 的值;
(2)若 ,求 的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了鼓勵(lì)市民節(jié)約用水,某市居民生活用水按階梯式水價(jià)計(jì)費(fèi).如表所 示是該市居民一戶一表生活用水及提示計(jì)費(fèi)價(jià)格表的部分信息:

自來(lái)水銷售價(jià)格

污水處理價(jià)格

每戶每月用水量

單價(jià):元/

單價(jià):元/

17 噸以下

a

0.80

超過(guò) 17 噸但不超過(guò) 30

噸的部分

b

0.80

超過(guò) 30 噸的部分

6.00

0.80

(說(shuō)明:每戶產(chǎn)生的污水量等于該戶自來(lái)水用水量;水費(fèi)自來(lái)水費(fèi)用 污水處理費(fèi)用)

已知小明家 2017 5 月份用水 20 噸,交水費(fèi) 66 元;6 月份用水 25 噸交水費(fèi)91

(1)a 、b 的值;

(2)為了節(jié)約開支,小明家計(jì)劃把 7 月份的水費(fèi)控制在不超過(guò)家庭月收入的2% .若小明家的月收入為 9200 元,則小明家 7 月份最多能用水多少噸?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中, 放置一副三角板 ABO(OAB 90 ,OBA AOB 45 ,OA AB) , BO 邊與 x 軸重合,其中一個(gè)45角的頂點(diǎn)在原點(diǎn)O ,直角頂點(diǎn) A 在第一象限內(nèi).

(1)將另一個(gè)三角板 DEF 如圖 1 放置, EDF 90 ,直角頂點(diǎn) D 置于 AO 邊上不與O 重合,此時(shí), DE y 軸于 M 點(diǎn), DF x 軸于 N 點(diǎn),求證:DM DN

(2)如圖 2, D 是線段 AB 上一動(dòng)點(diǎn),連接OD ,過(guò)O OE OD ,取點(diǎn) E 滿足OE OD .連接 EB OA 于點(diǎn) P ,探究的值是否為定值,若是定值,求出其值;若不是定值,說(shuō)明理由.

(3)如圖 3,直線a 經(jīng)過(guò)原點(diǎn)且與 y 軸成22.5角,Q x 軸上方直線a 上一動(dòng)點(diǎn),連接 AQ 、 BQ ,請(qǐng)比較OB OA QA QB 的大小關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰ABC中,AB=AC,A=20°,AB上一點(diǎn)D,且AD=BC,過(guò)點(diǎn)DDEBCDE=AB,連接EC,則∠DCE的度數(shù)為(

A. 80° B. 70° C. 60° D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AC是⊙O的直徑,點(diǎn)B在圓周上(不與A、C重合),點(diǎn)D在AC的延長(zhǎng)線上,連接BD交⊙O于點(diǎn)E,若∠AOB=3∠ADB,則(
A.DE=EB
B. DE=EB
C. DE=DO
D.DE=OB

查看答案和解析>>

同步練習(xí)冊(cè)答案