【題目】為了鼓勵市民節(jié)約用水,某市居民生活用水按階梯式水價計費.如表所 示是該市居民“一戶一表”生活用水及提示計費價格表的部分信息:
自來水銷售價格 | 污水處理價格 | |
每戶每月用水量 | 單價:元/ 噸 | 單價:元/ 噸 |
17 噸以下 | a | 0.80 |
超過 17 噸但不超過 30 噸的部分 | b | 0.80 |
超過 30 噸的部分 | 6.00 | 0.80 |
(說明:①每戶產生的污水量等于該戶自來水用水量;②水費自來水費用 污水處理費用)
已知小明家 2017 年 5 月份用水 20 噸,交水費 66 元;6 月份用水 25 噸交水費91元;
(1)求a 、b 的值;
(2)為了節(jié)約開支,小明家計劃把 7 月份的水費控制在不超過家庭月收入的2% .若小明家的月收入為 9200 元,則小明家 7 月份最多能用水多少噸?
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx-3經過A(-1,0)、B(3,0)兩點,與y軸交于C點,
(1)求拋物線的解析式;
(2)如圖①,拋物線的對稱軸上有一點P,且點P在x軸下方,線段PB繞點P順時針旋轉90°,點B的對應點B′恰好落在拋物線上,求點P的坐標;
(3)如圖②,直線y= x+ 交拋物線于A、E兩點,點D為線段AE上一點,連接BD,有一動點Q從B點出發(fā),沿線段BD以每秒1個單位的速度運動到D,再沿DE以每秒鐘2個單位的速度運動到E,問:是否存在點D,使點Q從點B到E的運動時間最少,若存在,請求出點D的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,拋物線y=ax2+bx+c(a≠0)與x軸交于點A(-1,0),B(4,0)兩點,與y軸交于點C,且OC=3OA,點P是拋物線上的一個動點,過點P作PE⊥x軸于點E,交直線BC于點D,連接PC.
(1)試求拋物線的解析式;
(2)如圖2,當動點P只在第一象限的拋物線上運動時,過點P作PF⊥BC于點F,試問△PFD的周長是否有最大值?如果有,請求出最大值;如果沒有,請說明理由.
(3)當點P在拋物線上運動時,將△CPD沿直線CP翻折,點D的對應點為點Q,試問,四 邊形CDPQ能否成為菱形?如果能,請求此時點P的坐標;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系 中,已知直線 ( )分別交反比例函數 和 在第一象限的圖象于點 , ,過點 作 軸于點 ,交 的圖象于點 ,連結 .若 是等腰三角形,則 的值是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=10cm,BC=8cm,點D為AB的中點.
(1)如果點P在線段BC上以3cm/s的速度由B點向C點運動,同時,點Q在線段CA上由C點向A點運動.
①若點Q的運動速度與點P的運動速度相等,經過1s后,△BPD與△CQP是否全等,請說明理由;
②若點Q的運動速度與點P的運動速度不相等,當點Q的運動速度為多少時,能夠使△BPD與△CQP全等?
(2)若點Q以②中的運動速度從點C出發(fā),點P以原來的運動速度從點B同時出發(fā),都逆時針沿△ABC三邊運動,求經過多長時間點P與點Q第一次在△ABC的哪條邊上相遇?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰三角形ABC底邊BC的長為4cm,面積是12cm2,腰AB的垂直平分線EF交AC于點F,若D為BC邊上的中點,M為線段EF上一動點,則△BDM的周長最短為______cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在直角坐標系中,我們把橫、縱坐標都為整數的點稱為整點,記頂點都是整點的三角形為整點三角形.如圖,已知整點A(2,3),B(4,4),請在所給網格區(qū)域(含邊界)上按要求畫整點三角形.
(1)在圖1中畫一個△PAB,使點P的橫、縱坐標之和等于點A的橫坐標;
(2)在圖2中畫一個△PAB,使點P,B橫坐標的平方和等于它們縱坐標和的4倍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=AC,CF⊥AB于F,BE⊥AC于E,CF與BE交于點D.有下列結論:①△ABE≌△ACF;②△BDF≌△CDE;③點D在∠BAC的平分線上;④點C在AB的中垂線上.以上結論正確的有__________.(填序號)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com