【題目】如圖,在 Rt△ABC 中BC=2,以 BC 的中點 O 為圓心的⊙O 分別與 AB,AC 相切于 D,E 兩點,的長為( )
A.B.C.πD.2π
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正方形ABCD和正方形BEFG如圖(一)所示放置,已知AB=5,BE=6,將正方形BEFG繞點B順時針旋轉(zhuǎn)一定的角度α(0°≤α≤360°)到圖(二)所示:連接AE,CG,
(1)求線段AE與CG的關(guān)系,并給出證明
(2)當(dāng)旋轉(zhuǎn)至某一個角度時,點C,E,G在同一條直線上,請畫出示意圖形,并求出此時AE的長
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,.P是底邊上的一個動點(P與B、C不重合),以P為圓心,為半徑的與射線交于點D,射線交射線于點E.
(1)若點E在線段的延長線上,設(shè),求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍.
(2)連接,若,求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABO的三個頂點坐標(biāo)分別為:A(2,3)、B(3,1)、O(0,0).
(1)將△ABO向左平移4個單位,畫出平移后的△A1B1O1.
(2)將△ABO繞點O順時針旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后得到的△A2B2O.此時四邊形ABA2B2的形狀是 .
(3)在平面上是否存在點D,使得以A、B、O、D為頂點的四邊形是平行四邊形,若存在請直接寫出符合條件的所有點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,二次函數(shù)的圖象與x軸交于A(-2,0),B(4,0)兩點,且函數(shù)的最大值為9.
(1)求二次函數(shù)的解析式;
(2)設(shè)此二次函數(shù)圖象的頂點為C,與y軸交點為D,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,AB=AC=3,∠BAC=100°,D是BC的中點.
小明對圖①進行了如下探究:在線段AD上任取一點P,連接PB.將線段PB繞點P按逆時針方向旋轉(zhuǎn)80°,點B的對應(yīng)點是點E,連接BE,得到△BPE.小明發(fā)現(xiàn),隨著點P在線段AD上位置的變化,點E的位置也在變化,點E可能在直線AD的左側(cè),也可能在直線AD上,還可能在直線AD的右側(cè).
請你幫助小明繼續(xù)探究,并解答下列問題:
(1)當(dāng)點E在直線AD上時,如圖②所示.
①∠BEP= °;
②連接CE,直線CE與直線AB的位置關(guān)系是 .
(2)請在圖③中畫出△BPE,使點E在直線AD的右側(cè),連接CE.試判斷直線CE與直線AB的位置關(guān)系,并說明理由.
(3)當(dāng)點P在線段AD上運動時,求AE的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l與△ABC在邊長為1個單位長度的小正方形網(wǎng)格中,點A,B,C都為網(wǎng)格線的交點.
(1)請畫出△ABC關(guān)于直線l對稱的△A1B1C1(點A,B,C的對稱點分別為A1,B1,C1).
(2)請畫出將線段AC向左平移3個單位,再向下平移5個單位得到的線段A2C2(點A,C的對應(yīng)點分別為A2,C2),再以A2C2為斜邊畫一個等腰直角三角形A2B2C2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A(1,0),B(0,2),C(2,1);
(1)以原點O為位似中心,在第二象限畫出△A1B1C1,使△A1B1C1與△ABC的位似比為2:1;
(2)點P(a,b)為線段AC上的任意一點,則點P在△A1B1C1中的對應(yīng)點P1的坐標(biāo)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com