【題目】如圖,為等邊三角形內(nèi)的一點(diǎn),且到三個(gè)頂點(diǎn)、、的距離分別為3、4、5,則的面積為( )
A.10B.8C.6D.3
【答案】D
【解析】
將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,根據(jù)旋轉(zhuǎn)的性質(zhì)得BE=BP=4,AE=PC=5,∠PBE=60°,則△BPE為等邊三角形,得到PE=PB=4,∠BPE=60°,在△AEP中,AE=5,延長BP,作AF⊥BP于點(diǎn)FAP=3,PE=4,根據(jù)勾股定理的逆定理可得到△APE為直角三角形,且∠APE=90°,即可得到∠APB的度數(shù),在直角△APF中利用三角函數(shù)求得AF的長,根據(jù)三角形的面積公式即可得到結(jié)論.
解:∵△ABC為等邊三角形,
∴BA=BC,
可將△BPC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得△BEA,連EP,且延長BP,作AF⊥BP于點(diǎn)F.如圖,
∴BE=BP=4,AE=PC=5,∠PBE=60°,
∴△BPE為等邊三角形,
∴PE=PB=4,∠BPE=60°,
在△AEP中,AE=5,AP=3,PE=4,
∴AE2=PE2+PA2,
∴△APE為直角三角形,且∠APE=90°,
∴∠APB=90°+60°=150°.
∴∠APF=30°,
∴在直角△APF中,AF=AP=,
∴△PAB的面積=PBAF=×4×=3,
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=∠BCD=90°,∠ABC=45°,連接BD,點(diǎn)O為BD的中點(diǎn),連接AO并延長交BC于點(diǎn)E,若,CD=4,則AD的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖4所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)P從點(diǎn)A出發(fā)沿邊AC向點(diǎn)C以1cm/s的速度移動(dòng),點(diǎn)Q從C點(diǎn)出發(fā)沿CB邊向點(diǎn)B以2cm/s的速度移動(dòng).
(1)、如果P、Q同時(shí)出發(fā),幾秒鐘后,可使△PCQ的面積為8平方厘米?
(2)、點(diǎn)P、Q在移動(dòng)過程中,是否存在某一時(shí)刻,使得△PCQ的面積等于△ABC的面積的一半.若存在,求出運(yùn)動(dòng)的時(shí)間;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2021年我省開始實(shí)施“ 3+1+2”高考新方案,其中語文、數(shù)學(xué)、外語三門為統(tǒng)考科目( 必考), 物理和歷史兩個(gè)科目中任選 1門,另外在思想政治、地理、化學(xué)、生物四門科目中任選 2門,共計(jì)6門科目,總分750 分, 假設(shè)小麗在選擇科目時(shí)不考慮主觀性.
(1)小麗選到物理的概率為 ;
(2)請(qǐng)用“畫樹狀圖”或“列表”的方法分析小麗在思想政治、 地理、 化學(xué)、生物四門科目中任選 2門選到化學(xué)、生物的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】據(jù)報(bào)道,“國際剪刀石頭布協(xié)會(huì)”提議將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目.某校學(xué)生會(huì)想知道學(xué)生對(duì)這個(gè)提議的了解程度,隨機(jī)抽取部分學(xué)生進(jìn)行了一次問卷調(diào)查,并根據(jù)收集到的信息進(jìn)行了統(tǒng)計(jì),繪制了下面兩幅尚不完整的統(tǒng)計(jì)圖.請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題.
(1)接受問卷調(diào)查的學(xué)生共有 名,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為 ;請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校共有學(xué)生1200人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生中對(duì)將“剪刀石頭布”作為奧運(yùn)會(huì)比賽項(xiàng)目的提議達(dá)到“了解””和“基本了解”程度的總?cè)藬?shù);
(3)“剪刀石頭布”比賽時(shí)雙方每次任意出“剪刀”、“石頭”、“布”這三種手勢中的一種,規(guī)則為:剪刀勝布,布勝石頭,石頭勝剪刀,若雙方出現(xiàn)相同手勢,則算打平.若小剛和小明兩人只比賽一局,請(qǐng)用樹狀圖或列表法求兩人打平的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知, , 與成正比例, 與成反比例,并且當(dāng)時(shí), ,當(dāng)時(shí), .
()求關(guān)于的函數(shù)關(guān)系式.
()當(dāng)時(shí),求的值.
【答案】();(), .
【解析】分析:(1)首先根據(jù)與x成正比例, 與x成反比例,且當(dāng)x=1時(shí),y=4;當(dāng)x=2時(shí),y=5,求出 和與x的關(guān)系式,進(jìn)而求出y與x的關(guān)系式,(2)根據(jù)(1)問求出的y與x之間的關(guān)系式,令y=0,即可求出x的值.
本題解析:
()設(shè), ,
則,
∵當(dāng)時(shí), ,當(dāng)時(shí), ,
∴
解得, ,
∴關(guān)于的函數(shù)關(guān)系式為.
()把代入得,
,
解得: , .
點(diǎn)睛:本題考查了用待定系數(shù)法求反比例函數(shù)的解析式:(1)設(shè)出含有待定系數(shù)的反比例函數(shù)解析式y(tǒng)=kx(k為常數(shù),k≠0);(2)把已知條件(自變量與對(duì)應(yīng)值)代入解析式,得到待定系數(shù)的方程;(3)解方程,求出待定系數(shù);(4)寫出解析式.
【題型】解答題
【結(jié)束】
24
【題目】如圖,菱形的對(duì)角線、相交于點(diǎn),過點(diǎn)作且,連接、,連接交于點(diǎn).
(1)求證:;
(2)若菱形的邊長為2, .求的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在二次函數(shù)y=ax2+bx+c(a≠0)的圖象中,小明同學(xué)觀察得出了下面幾條信息:①b2﹣4ac>0;②abc<0;③;④b2=4a(c﹣1);⑤關(guān)于x的一元二次方程ax2+bx+c=3無實(shí)數(shù)根,共中信息錯(cuò)誤的個(gè)數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將矩形ABCD按如圖所示的方式折疊,BE,EG,FG為折痕,若頂點(diǎn)A,C,D都落在點(diǎn)O處,且點(diǎn)B,O,G在同一條直線上,同時(shí)點(diǎn)E,O,F在另一條直線上,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】李明準(zhǔn)備進(jìn)行如下操作實(shí)驗(yàn),把一根長40 cm的鐵絲剪成兩段,并把每段首尾相連各圍成一個(gè)正方形.
(1)要使這兩個(gè)正方形的面積之和等于58 cm2,李明應(yīng)該怎么剪這根鐵絲?
(2)李明認(rèn)為這兩個(gè)正方形的面積之和不可能等于48 cm2,你認(rèn)為他的說法正確嗎?請(qǐng)說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com