【題目】二次函數(shù)的圖象頂點(diǎn)是(﹣1,4),且過(2,﹣3)
(1)求函數(shù)的解析式.
(2)求出函數(shù)圖象與坐標(biāo)軸的交點(diǎn).
【答案】(1)y=﹣(x+1)2+4;(2)與x軸的交點(diǎn)坐標(biāo)為(﹣1+,0),(﹣1﹣,0);與y軸的交點(diǎn)坐標(biāo)為(0,).
【解析】
(1)設(shè)該函數(shù)的頂點(diǎn)式,然后根據(jù)該函數(shù)過點(diǎn)(2,﹣3),可以求得該函數(shù)的解析式;
(2)再令y=0求出相應(yīng)的x的值,即可寫出該函數(shù)與x軸的交點(diǎn)坐標(biāo),令x=0求出相應(yīng)的y的值,即可寫出該函數(shù)與y軸的交點(diǎn)坐標(biāo),本題得以解決.
解:(1)設(shè)這個(gè)二次函數(shù)的解析式為y=a(x+1)2+4,
∵該函數(shù)過點(diǎn)(2,﹣3),
∴﹣3=a(2+1)2+4,
解得:a=﹣,
即該函數(shù)的解析式為:y=﹣(x+1)2+4;
(2)當(dāng)y=0時(shí),0=﹣(x+1)2+4,
解得,x1=﹣1+,x2=﹣1﹣,
當(dāng)x=0時(shí),y=,
由上可得,該函數(shù)的解析式為y=﹣(x+1)2+4,與x軸的交點(diǎn)坐標(biāo)為:(﹣1+,0),(﹣1﹣,0);與y軸的交點(diǎn)坐標(biāo)為:(0,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年5月14日至15日,“一帶一路”國(guó)際合作高峰論壇在北京舉行,本屆論壇期間,中國(guó)同30多個(gè)國(guó)家簽署經(jīng)貿(mào)合作協(xié)議,某廠準(zhǔn)備生產(chǎn)甲、乙兩種商品共8萬(wàn)件銷往“一帶一路”沿線國(guó)家和地區(qū),已知2件甲種商品與3件乙種商品的銷售收入相同,3件甲種商品比2件乙種商品的銷售收入多1500元.
(1)甲種商品與乙種商品的銷售單價(jià)各多少元?
(2)若甲、乙兩種商品的銷售總收入不低于5400萬(wàn)元,則至少銷售甲種商品多少萬(wàn)件?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:a、b、c均為非零實(shí)數(shù),且a>b>c,關(guān)于x的一元二次方程 (a≠0)其中一個(gè)實(shí)數(shù)根為2。
(1)填空:4a+2b+c 0,a 0,c 0(填“>”,“<”或“=”);
(2)若關(guān)于x的一元二次方程(a≠0)的兩個(gè)實(shí)數(shù)根,滿足一個(gè)根為另一個(gè)根的2倍,我們就稱這樣的方程為“倍根方程”,若原方程是倍根方程,則求a、c之間的關(guān)系。
(3)若a=1時(shí),設(shè)方程的另一根為m(m≠2),在兩根之間(不包含兩根)的所有整數(shù)的絕對(duì)值之和是7,求b的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是正方形ABCD內(nèi)一點(diǎn),點(diǎn)P到點(diǎn)A,B和D的距離分別為1,2,.△ADP沿點(diǎn)A旋轉(zhuǎn)至△ABP′,連接PP′,并延長(zhǎng)AP與BC相交于點(diǎn)Q.
(1)求證:△APP′是等腰直角三角形;
(2)求∠BPQ的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是元時(shí),每天的銷售量是件,而銷售單價(jià)每降低元,每天就可多售出件,但要求銷售單價(jià)不得低于成本.求銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形的邊長(zhǎng)為,點(diǎn)、分別為邊、上的點(diǎn),,點(diǎn)、分別為、邊上的點(diǎn),連接,若線段與的夾角為,則的長(zhǎng)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)銷售一批名牌襯衫,平均每天可售出20件,每件盈利45元,為了擴(kuò)大銷售、增加盈利盡快減少庫(kù)存,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施,經(jīng)調(diào)查發(fā)現(xiàn),如果每件襯衫每降價(jià)1元,商場(chǎng)平均每天可多售出4件,若商場(chǎng)平均每天盈利2100元,每件襯衫應(yīng)降價(jià)多少元?請(qǐng)完成下列問題:
(1)未降價(jià)之前,某商場(chǎng)襯衫的總盈利為 元.
(2)降價(jià)后,設(shè)某商場(chǎng)每件襯衫應(yīng)降價(jià)x元,則每件襯衫盈利 元,平均每天可售出 件(用含x的代數(shù)式進(jìn)行表示)
(3)請(qǐng)列出方程,求出x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形 ABCD 的對(duì)角線 AC 與 BD 相交于點(diǎn) O,CE∥BD, DE∥AC , AD=2, DE=2,則四邊形 OCED 的面積為( 。
A. 2 B. 4 C. 4 D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,∠A=∠ABC,直線EF分別交△ABC的邊AB,AC和CB的延長(zhǎng)線于點(diǎn)D,E,F.
(1)求證:∠F+∠FEC=2∠A;
(2)過B點(diǎn)作BM∥AC交FD于點(diǎn)M,試探究∠MBC與∠F+∠FEC的數(shù)量關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com