【題目】如圖,AB是半圓O的直徑,以AB為邊在半圓同側(cè)作正方形ABCD,點(diǎn)P是CD中點(diǎn),BP與半圓交于點(diǎn)Q,連接DQ,設(shè)半圓的半徑為a.
(1)判斷直線DQ與半圓O的位置關(guān)系,并說(shuō)明理由;
(2)求sin∠DQP的值.
【答案】(1)DQ是半圓的切線,理由見(jiàn)解析;(2).
【解析】
(1)連接OQ,OD,得出四邊形DOBP是平行四邊形,證得△AOD≌△QOD,求得∠OQD=∠OAD=90°,得到OQ⊥DQ,即可得證;(2)求得∠DQP=∠ODQ,OD==,利用sin∠DQP=sin∠ODQ=即可求解.
解:(1)DC和半圓O相切
連接OQ,OD,如圖
∵DP∥OB,DP=OB
∴四邊形DOBP是平行四邊形
∴DO∥BP
∴∠AOD=∠OBP,∠DOQ=∠OQB
∵OB=OQ
∴∠OBP=∠OQB
∴∠AOD=∠QOD
∴△AOD≌△QOD(SAS)
∴∠OQD=∠OAD=90°
∴OQ⊥DQ即DQ是半圓的切線
(2)由①可知,DO∥BP
∴∠DQP=∠ODQ
∵DQ=AD=2a,OQ=a
∴∠DQP=∠ODQ
∵DQ=AD=2a,OQ=a
∴OD==
∴sin∠DQP=sin∠ODQ=
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩名同學(xué)從《中國(guó)好聲音》、《歌手》、《蒙面唱將猜猜猜》三個(gè)綜藝節(jié)目中都隨機(jī)選擇一個(gè)節(jié)目觀看.
(1)甲同學(xué)觀看《蒙面唱將猜猜猜》的概率是 ;
(2)求甲、乙兩名同學(xué)觀看同一節(jié)目的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某手機(jī)店銷售一部A型手機(jī)比銷售一部B型手機(jī)獲得的利潤(rùn)多50元,銷售相同數(shù)量的A型手機(jī)和B型手機(jī)獲得的利潤(rùn)分別為3000元和2000元.
(1)求每部A型手機(jī)和B型手機(jī)的銷售利潤(rùn)分別為多少元?
(2)該商店計(jì)劃一次購(gòu)進(jìn)兩種型號(hào)的手機(jī)共110部,其中A型手機(jī)的進(jìn)貨量不超過(guò)B型手機(jī)的2倍.設(shè)購(gòu)進(jìn)B型手機(jī)n部,這110部手機(jī)的銷售總利潤(rùn)為y元.
①求y關(guān)于n的函數(shù)關(guān)系式;
②該手機(jī)店購(gòu)進(jìn)A型、B型手機(jī)各多少部,才能使銷售總利潤(rùn)最大?
(3)實(shí)際進(jìn)貨時(shí),廠家對(duì)B型手機(jī)出廠價(jià)下調(diào)m(30<m<100)元,且限定商店最多購(gòu)進(jìn)B型手機(jī)80臺(tái).若商店保持兩種手機(jī)的售價(jià)不變,請(qǐng)你根據(jù)以上信息及(2)中的條件,設(shè)計(jì)出使這110部手機(jī)銷售總利潤(rùn)最大的進(jìn)貨方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長(zhǎng)線于點(diǎn)P,OF∥BC交AC于AC點(diǎn)E,交PC于點(diǎn)F,連接AF.
(1)判斷AF與⊙O的位置關(guān)系并說(shuō)明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對(duì)稱軸為x=1,與y軸交于點(diǎn)C,與x軸交于點(diǎn)A、點(diǎn)B(﹣1,0),則①二次函數(shù)的最大值為a+b+c②9a+3b+c>0:③b2<4ac④c=﹣3a⑤當(dāng)y<0時(shí),﹣1<x<3,其中正確的個(gè)數(shù)是_____(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,邊AB的垂直平分線交AD于點(diǎn)E,交CB的延長(zhǎng)線于點(diǎn)F,連接AF,BE.
(1)求證:△AGE≌△BGF;
(2)試判斷四邊形AFBE的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系xOy中,正方形OABC的邊長(zhǎng)為2cm,點(diǎn)A、C分別在y軸的負(fù)半軸和x軸的正半軸上,拋物線y=ax2+bx+c經(jīng)過(guò)點(diǎn)A、B和D(4,).
(1)求拋物線的表達(dá)式.
(2)如果點(diǎn)P由點(diǎn)A出發(fā)沿AB邊以2cm/s的速度向點(diǎn)B運(yùn)動(dòng),同時(shí)點(diǎn)Q由點(diǎn)B出發(fā),沿BC邊以1cm/s的速度向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí),另一點(diǎn)也隨之停止運(yùn)動(dòng).設(shè)S=PQ2(cm2).
①試求出S與運(yùn)動(dòng)時(shí)間t之間的函數(shù)關(guān)系式,并寫出t的取值范圍;
②當(dāng)S取時(shí),在拋物線上是否存在點(diǎn)R,使得以點(diǎn)P、B、Q、R為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出R點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(3)在拋物線的對(duì)稱軸上求點(diǎn)M,使得M到D、A的距離之差最大,求出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形OABC的一個(gè)頂點(diǎn)B的坐標(biāo)是(4,2),反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)矩形的對(duì)稱中心E,且與邊BC交于點(diǎn) D.
(1)求反比例函數(shù)的解析式和點(diǎn)D的坐標(biāo);
(2)若過(guò)點(diǎn)D的直線y=mx+n將矩形OABC的面積分成3:5的兩部分,求此直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,直線AB:y=kx+b(k<0,b>0),與x軸交于點(diǎn)A、與y軸交于點(diǎn)B,直線CD與x軸交于點(diǎn)C、與y軸交于點(diǎn)D.若直線CD的解析式為y=﹣(x+b),則稱直線CD為直線AB的”姊線”,經(jīng)過(guò)點(diǎn)A、B、C的拋物線稱為直線AB的“母線”.
(1)若直線AB的解析式為:y=﹣3x+6,求AB的”姊線”CD的解析式為: (直接填空);
(2)若直線AB的”母線”解析式為:,求AB的”姊線”CD的解析式;
(3)如圖2,在(2)的條件下,點(diǎn)P為第二象限”母線”上的動(dòng)點(diǎn),連接OP,交”姊線”CD于點(diǎn)Q,設(shè)點(diǎn)P的橫坐標(biāo)為m,PQ與OQ的比值為y,求y與m的函數(shù)關(guān)系式,并求y的最大值;
(4)如圖3,若AB的解析式為:y=mx+3(m<0),AB的“姊線”為CD,點(diǎn)G為AB的中點(diǎn),點(diǎn)H為CD的中點(diǎn),連接OH,若GH=,請(qǐng)直接寫出AB的”母線”的函數(shù)解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com