【題目】我們知道平行四邊形有很多性質(zhì),現(xiàn)在如果我們把平行四邊形沿著它的一條對角線翻折,會發(fā)現(xiàn)這其中還有更多的結(jié)論.
(發(fā)現(xiàn)與證明)在ABCD中,AB≠BC,將△ABC沿AC翻折至△AB′C,連結(jié)B′D.
(1)填空:B′E DE(填“<,=,>”);
(2)求證:B′D∥AC;
(應(yīng)用與探究)
(3)在ABCD中,已知:BC=4,∠B=60°,將△ABC沿AC翻折至△AB′C,連結(jié)B′D.若以A、C、D、B′為頂點的四邊形是矩形,求AC的長.
【答案】(1)=;(2)見解析;(3)2或4.
【解析】
(1)由平行四邊形的性質(zhì)得出∠EAC=∠ACB,由翻折的性質(zhì)得出∠ACB=∠ACB′,證出∠EAC=∠ACB',得出AE=CE;從而DE=B'E
(2)根據(jù)等腰三角形的性質(zhì)得出DE=B'E,證出∠B′DA=(180∠B′ED),由∠AEC=∠B'ED,得出∠ACB'=∠CB'D,即可得出B'D//AC;
(3)分兩種情況:①由矩形的性質(zhì)得出∠CAB'=90°,得出∠BAC=90°,再由30°直角三角形性質(zhì)即可求出AC=2;②由矩形的性質(zhì)和已知條件得出AC=4.
(1)解:∵四邊形ABCD是平行四邊形,
∴AD=BC,AD//BC,
∴∠EAC=∠ACB,
∵△ABC≌△AB'C,
∴∠ACB=∠ACB',BC=B'C,
∴∠EAC=∠ACB',
∴AE=CE,
∴DE=B′E;
故答案為=.
(2)證明:∵DE=B'E
∴∠C B'D=∠B’DA=(180-∠B'ED)
∵∠AEC=∠B'ED
∴∠AC B'=∠C B'D
∴B'D∥AC
(3)解:情況一:如圖1
∵四邊形ACDB’是矩形,
∴∠CAB’=90°,
∴∠BAC=90°
∵∠B=60°
∴AC=BC=2
情況二:如圖2
∵四邊形ACB’D是矩形,
∴∠ACB’=90°
∴∠ACB=90°
∵BC=4,∠B=60°
∴AC=4,
綜上所述:ACAC的長為2或4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(2k+1)x+k2+1=0.
(1)若方程有兩個不相等的實數(shù)根,求k的取值范圍;
(2)若方程的兩根恰好是一個矩形的兩邊長,且k=4,求該矩形的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,P是△ABC內(nèi)的一點,PA=3,PB=1,CD=PC=2,CD⊥PC.
(1)找出圖中一對全等三角形,并證明;
(2)求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,P是線段AB上一點,AB=12cm,C、D兩點分別從P、B出發(fā)以1cm/s、2cm/s的速度沿直線AB向左運動(C在線段AP上,D在線段BP上),運動的時間為t.
(1)當(dāng)t=1時,PD=2AC,請求出AP的長;
(2)當(dāng)t=2時,PD=2AC,請求出AP的長;
(3)若C、D運動到任一時刻時,總有PD=2AC,請求出AP的長;
(4)在(3)的條件下,Q是直線AB上一點,且AQ﹣BQ=PQ,求PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校數(shù)學(xué)興趣小組成員小華對本班上學(xué)期期末考試數(shù)學(xué)成績(成績?nèi)≌麛?shù),滿分為100分)作了統(tǒng)計分析,繪制成如下頻數(shù)分布直方圖和頻數(shù)、頻率分布表.請你根據(jù)圖表提供的信息,解答下列問題:
分組 | 49.5~59.5 | 59.5~69.5 | 69.5~79.5 | 79.5~89.5 | 89.5~100.5 | 合計 |
頻數(shù) | 2 | 20 | 16 | 4 | 50 | |
頻率 | 0.04 | 0.16 | 0.40 | 0.32 | 1 |
(1)頻數(shù)、頻率分布表中 , ;
(2)補全頻數(shù)分布直方圖;
(3)數(shù)學(xué)老師準(zhǔn)備從不低于90分的學(xué)生中選1人介紹學(xué)習(xí)經(jīng)驗,那么取得了93分的小華被選上的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長是16,點E在邊AB上,AE=3,點F是邊BC上不與點B,C重合的一個動點,把△EBF沿EF折疊,點B落在B′處.若△CDB′恰為等腰三角形,則DB′的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】先閱讀下列解題過程,然后解答后面兩個問題.
解方程:|x+3|=2.
解:當(dāng)x+3≥0時,原方程可化為x+3=2,解得x=-1;
當(dāng)x+3<0時,原方程可化為x+3=-2,解得x=-5.
所以原方程的解是x=-1或x=-5.
(1)解方程:|3x-2|-4=0.
(2)已知關(guān)于x的方程|x-2|=b+1.
①若方程無解,則b的取值范圍是 .
②若方程只有一個解,則b的值為 .
③若方程有兩個解,則b的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校校內(nèi)有一塊如圖所示的三角形空地ABC,計劃將這塊空地建成一個花園,以美化校園環(huán)境,預(yù)計花園每平方米造價為60元,學(xué)校修建這個花園需要投資多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com