【題目】如圖,直線l1:y=kx+4(k關(guān)0)與x軸,y軸分別相交于點(diǎn)A,B,與直線l2:y=mx(m≠0)相交于點(diǎn)C(1,2).
(1)求k,m的值;
(2)求點(diǎn)A和點(diǎn)B的坐標(biāo).
【答案】(1)k=-2,m=2;(2)點(diǎn)A(2,0),點(diǎn)B(0,4)
【解析】
(1)將點(diǎn)C (1,2)的坐標(biāo)分別代入y=kx+4和y= mx中,即可得到k,m的值;
(2)在y=-2x+4中,令y=0,得x=2;令x=0,得y=4,即可得到點(diǎn)A和點(diǎn)B的坐標(biāo).
解:(1)將點(diǎn)C(1,2)的坐標(biāo)分別代入y=kx+4和y=mx中,
得2=k+4,2=m,
解得k=-2,m=2.
(2)在y=-2x+4中,令y=0,得x=2,
令x=0,得y=4,
點(diǎn)A(2,0),點(diǎn)B(0,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是二次函數(shù) y=ax2+bx+c(a≠0)的圖象的一部分,給出下列命題:①a+b+c=0;②b>2a;③ax2+bx+c=0的兩根分別為-3和1;④a-2b+c>0.其中正確的命題是( )
A. ①② B. ②③ C. ①③ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,用同樣規(guī)格的黑白兩色的正方形瓷磚鋪設(shè)矩形地面,請(qǐng)觀察下列圖形并解答有關(guān)問(wèn)題.
(1)在第n個(gè)圖中,第一橫行共_________ 塊瓷磚,第一豎列共有_________ 塊瓷磚;(均用含n的代數(shù)式表示)
(2)設(shè)鋪設(shè)地面所用瓷磚的總塊數(shù)為y,請(qǐng)寫出y與(1)中的n的函數(shù)關(guān)系式;
(3)按上述鋪設(shè)方案,鋪一塊這樣的矩形地面共用了506塊瓷磚,求此時(shí)n的值;
(4)黑瓷磚每塊4元,白瓷磚每塊3元,問(wèn)題(3)中,共花多少元購(gòu)買瓷磚;
(5)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請(qǐng)通過(guò)計(jì)算說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形 ABCD 中,AD∥BC,對(duì)角線 AC、BD 相交于點(diǎn)O, △AOB 與△BOC 的面積分別為 4、8,則梯形ABCD 的面積等于___________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點(diǎn)D,E分別是邊BC,AC的中點(diǎn),連接DE. 將△EDC繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問(wèn)題發(fā)現(xiàn)
① 當(dāng)時(shí),;② 當(dāng)時(shí),
(2)拓展探究
試判斷:當(dāng)0°≤α<360°時(shí),的大小有無(wú)變化?請(qǐng)僅就圖2的情況給出證明.
(3)問(wèn)題解決
當(dāng)△EDC旋轉(zhuǎn)至A、D、E三點(diǎn)共線時(shí),直接寫出線段BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在“一帶一路”戰(zhàn)略的影響下,某茶葉經(jīng)銷商準(zhǔn)備把“茶路”融入“絲路”,經(jīng)計(jì)算,他銷售10斤A級(jí)別和20斤B級(jí)別茶葉的利潤(rùn)為4000元,銷售20斤A級(jí)別和10斤B級(jí)別茶葉的利潤(rùn)為3500元
(1)分別求出每斤A級(jí)別茶葉和每斤B級(jí)別茶葉的銷售利潤(rùn);
(2)若該經(jīng)銷商一次購(gòu)進(jìn)兩種級(jí)別的茶葉共200斤用于出口.設(shè)購(gòu)買A級(jí)別茶葉a斤(70≤a≤120),銷售完A、B兩種級(jí)別茶葉后獲利w元.
①求出w與a之間的函數(shù)關(guān)系式;
②該經(jīng)銷商購(gòu)進(jìn)A、B兩種級(jí)別茶葉各多少斤時(shí),才能獲取最大的利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一個(gè)直角三角形紙片的頂點(diǎn)A在∠MON的邊OM上移動(dòng),移動(dòng)過(guò)程中始終保持AB⊥ON于點(diǎn)B,AC⊥OM于點(diǎn)A.∠MON的角平分線OP分別交AB、AC于D、E兩點(diǎn).
(1)點(diǎn)A在移動(dòng)的過(guò)程中,線段AD和AE有怎樣的數(shù)量關(guān)系,并說(shuō)明理由.
(2)點(diǎn)A在移動(dòng)的過(guò)程中,若射線ON上始終存在一點(diǎn)F與點(diǎn)A關(guān)于OP所在的直線對(duì)稱,猜想線段DF和AE有怎樣的關(guān)系,并說(shuō)明理由.
(3)若∠MON=45°,猜想線段AC、AD、OC之間有怎樣的數(shù)量關(guān)系,并證明你的猜想.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班數(shù)學(xué)興趣小組對(duì)不等式組,討論得到以下結(jié)論:①若a=5,則不等式組的解集為3<x≤5;②若a=2,則不等式組無(wú)解;③若不等式組無(wú)解,則a的取值范圍為a<3;④若不等式組只有兩個(gè)整數(shù)解,則a的值可以為5.1,其中,正確的結(jié)論的序號(hào)是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年,在新泰市美麗鄉(xiāng)村建設(shè)中,甲、乙兩個(gè)工程隊(duì)分別承擔(dān)某處村級(jí)道路硬化和道路拓寬改造工程.己知道路硬化和道路拓寬改造工程的總里程數(shù)是8.6千米,其中道路硬化的里程數(shù)是道路拓寬里程數(shù)的2倍少1千米.
(1)求道路硬化和道路拓寬里程數(shù)分別是多少千米;
(2)甲、乙兩個(gè)工程隊(duì)同時(shí)開(kāi)始施工,甲工程隊(duì)比乙工程隊(duì)平均每天多施工10米.由于工期需要,甲工程隊(duì)在完成所承擔(dān)的施工任務(wù)后,通過(guò)技術(shù)改進(jìn)使工作效率比原來(lái)提高了.設(shè)乙工程隊(duì)平均每天施工米,若甲、乙兩隊(duì)同時(shí)完成施工任務(wù),求乙工程隊(duì)平均每天施工的米數(shù)和施工的天數(shù).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com