【題目】如圖,平分.
與FC會平行嗎?說明理由.
與BC的位置關(guān)系如何?為什么?
平分嗎?為什么?
【答案】(1)平行;(2)平行;(3)平分,證明見解析
【解析】試題分析:(1)而則∠CDB=∠1,根據(jù)同位角相等,兩直線平行,求得結(jié)論;
(2)要說明 AD∥BC.只要說明即可.而根據(jù)AE∥FC,可得:再據(jù)∠DAE=∠BCF就可以證得.
(3)BC平分∠DBE.即說明∠EBC=∠DBC是否成立.根據(jù)AE∥FC,可得:∠EBC=∠BCF,據(jù)AD∥BC得到:∠BCF=∠FDA,∠DBC=∠BDA,進而就可以證出結(jié)論.
試題解析:(1)平行;
證明:∵
∴∠CDB=∠1,
∴AE∥FC.
(2)平行,
證明:∵AE∥FC,
∴
∵∠DAE=∠BCF,
∴
∴AD∥BC.
(3)平分,
證明:∵AE∥FC,
∴∠EBC=∠BCF,
∵AD∥BC,
∴∠BCF=∠FDA,∠DBC=∠BDA,
又∵DA平分∠BDF,即∠FDA=∠BDA,
∴∠EBC=∠DBC,
∴BC平分∠DBE.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,每個小正方形網(wǎng)格的邊長為單位1,格點三角形(頂點是網(wǎng)格線的交點的三角形)ABC如圖所示.
(1)請畫出△ABC向右平移4個單位長度后的△A1B1C1,并寫出點C1的坐標;
(2)請計算△ABC的面積;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,下列判斷錯誤的是( )
A. 如果∠2=∠4,那么AB∥CD B. 如果∠1=∠3,那么AB∥CD
C. 如果∠BAD+∠D=180,那么AB∥CD D. 如果∠BAD+∠B=180,那么AD∥CD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我們知道,三角形的內(nèi)心是三條角平分線的交點,過三角形內(nèi)心的一條直線與兩邊相交,兩交點之間的線段把這個三角形分成兩個圖形.若有一個圖形與原三角形相似,則把這條線段叫做這個三角形的“內(nèi)似線”.
(1)等邊三角形“內(nèi)似線”的條數(shù)為 ;
(2)如圖,△ABC中,AB=AC,點D在AC上,且BD=BC=AD,求證:BD是△ABC的“內(nèi)似線”;
(3)在Rt△ABC中,∠C=90°,AC=4,BC=3,E、F分別在邊AC、BC上,且EF是△ABC的“內(nèi)似線”,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( 。
A. 要了解某公司生產(chǎn)的100萬只燈泡的使用壽命,可以采用抽樣調(diào)查的方法
B. 4位同學的數(shù)學期末成績分別為100、95、105、110,則這四位同學數(shù)學期末成績的中位數(shù)為100
C. 甲乙兩人各自跳遠10次,若他們跳遠成績的平均數(shù)相同,甲乙跳遠成績的方差分別為0.51和0.62,則乙的表現(xiàn)較甲更穩(wěn)定
D. 某次抽獎活動中,中獎的概率為表示每抽獎50次就有一次中獎
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com