【題目】如圖矩形ABCD中,AD=5,AB=7,點EDC上一個動點,把△ADE沿AE折疊,當(dāng)點D的對應(yīng)點D′落在∠ABC的角平分線上時,DE的長為__

【答案】

【解析】如圖,連接BD′,過D′MNAB,交AB于點MCD于點N,作D′PBCBC于點P,已知點D的對應(yīng)點D′落在ABC的角平分線上,可得MD′=PD′,設(shè)MD′=x,則PD′=BM=x,即可得AM=AB-BM=7-x,由折疊圖形的性質(zhì)可得AD=AD′=5,即x2+7-x2=25,解得x=34,即MD′=34.在RtEND′中,設(shè)ED′=a,當(dāng)MD′=3時,AM=7-3=4,D′N=5-3=2EN=4-a,由勾股定理可得a2=22+4-a2,解得a= ,即DE=當(dāng)MD′=4時,AM=7-4=3D′N=5-4=1,EN=3-a,由勾股定理可得a2=12+3-a2,解得a= ,即DE=,所以DE的長為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是面積為1的等邊三角形。取BC邊中點E,作ED∥AB,

EF∥AC,得到四邊形EDAF,它的面積記做S1;取BE中點G,做GH∥FB,GK∥EF,

得到四邊形GHFK,它的面積記作S2.照此規(guī)律作下去,

S2018=__________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法:

①兩個數(shù)互為倒數(shù),則它們的乘積為;②若,互為相反數(shù),則;

個有理數(shù)相乘,如果負(fù)因數(shù)的個數(shù)為奇數(shù)個,則積為負(fù);④若,則.其中正確的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示.

(1)求這個二次函數(shù)的解析式;
(2)根據(jù)圖象,寫出當(dāng)x取何值時,y>0?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)軸上有A、B、C三點,分別表示有理數(shù)-26、-10、10,動點P從A出發(fā),以每秒1個單位的速度向終點C移動,設(shè)點P移動時間為t秒.

(1)用含t的代數(shù)式表示P到點A和點C的距離:PA=________,PC=_____________

(2)當(dāng)點P運(yùn)動到B點時,點Q從A點出發(fā),以每秒3個單位的速度向C點運(yùn)動,Q點到達(dá)C點后,再立即以同樣的速度返回點A,當(dāng)點Q開始運(yùn)動后,請用t的代數(shù)式表示P、Q兩點間的距離。(友情提醒:注意考慮P、Q的位置)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別為AD,BC的中點,連結(jié)AF,DF,BE,CE,AFBE交于G,DFCE交于H.求證:四邊形EGFH為菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,A點的初始位置位于數(shù)軸上表示1的點,現(xiàn)對A點做如下移動:第1次向左移動3個單位長度至B點,第2次從B點向右移動6個單位長度至C點,第3次從C點向左移動9個單位長度至D點,第4次從D點向右移動12個單位長度至E點,,依此類推.這樣第_____次移動到的點到原點的距離為2018.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,ADBCBC=2AD,點ECD的中點,ACBE交于點F,那么ABFCEF的面積比是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】石頭剪子布,又稱“猜丁殼”,是一種起源于中國流傳多年的猜拳游戲.游戲時的各方每次用一只手做“石頭”、“剪刀”、“布”三種手勢中的一種,規(guī)定“石頭”勝“剪刀”、“剪刀”勝“布”、“布”勝“石頭”.兩人游戲時,若出現(xiàn)相同手勢,則不分勝負(fù)游戲繼續(xù),直到分出勝負(fù),游戲結(jié)束.三人游戲時,若三種手勢都相同或都不相同,則不分勝負(fù)游戲繼續(xù);若出現(xiàn)兩人手勢相同,則視為一種手勢與第三人所出手勢進(jìn)行對決,此時,參照兩人游戲規(guī)則.例如甲、乙二人同時出石頭,丙出剪刀,則甲、乙獲勝.假定甲、乙、丙三人每次都是隨機(jī)地做這三種手勢,那么:
(1)請你用畫樹狀圖或列表的方式,求出一次游戲中甲、乙兩人出第一次手勢時,不分勝負(fù)的概率;
(2)請直接寫出一次游戲中甲、乙、丙三人出第一次手勢時,不分勝負(fù)的概率.

查看答案和解析>>

同步練習(xí)冊答案