【題目】計(jì)算

1)(﹣8)﹣(﹣5+(﹣2

2)﹣12×2+(﹣22÷4﹣(﹣3

(3)化簡(jiǎn)求值:3ab22a2 b)﹣2ab2a2 b),其中a=-1,b=2

【答案】1-5;(22;(3-12

【解析】

(1)原式直接利用有理數(shù)的加減運(yùn)算法則計(jì)算即可;

(2)原式先算乘方,再算乘除,最后算加減運(yùn)算即可求出值;

(3)原式去括號(hào)合并得到最簡(jiǎn)結(jié)果,把a(bǔ)與b的值代入計(jì)算即可求出值.

解:(1)原式=-8+5-2=-8-2+5=-5

(2)原式=-12+44+3=-2+1+3=2

(3)原式=3ab2-6a2b-2 ab2+2a2b=3ab2-2 ab2-6a2b +2a2b= ab2-4 a2b,

當(dāng)a=1, b=2時(shí),原式=(-1) ×22-4×(-1)2×2=-4-8=-12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程|x2﹣x|﹣a=0,給出下列四個(gè)結(jié)論:①存在實(shí)數(shù)a,使得方程恰有2個(gè)不同的實(shí)根; ②存在實(shí)數(shù)a,使得方程恰有3個(gè)不同的實(shí)根;③存在實(shí)數(shù)a,使得方程恰有4個(gè)不同的實(shí)根;④存在實(shí)數(shù)a,使得方程恰有6個(gè)不同的實(shí)根;其中正確的結(jié)論個(gè)數(shù)是( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,四邊形是正方形,點(diǎn)是邊的中點(diǎn), ,且交正方形的外角平分線于點(diǎn)請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖形的探究片段,完成所提出的問題.

1)探究1:小強(qiáng)看到圖①后,很快發(fā)現(xiàn)這需要證明AEEF所在的兩個(gè)三角形全等,但ABEECF顯然不全等(個(gè)直角三角形,一個(gè)鈍角三角形)考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M(如圖②),連接EM后嘗試著去證明就行了.隨即小強(qiáng)寫出了如下的證明過程:

證明:如圖②,取AB的中點(diǎn)M,連接EM.

又∵

∵點(diǎn)E、M分別為正方形的邊BCAB的中點(diǎn),

是等腰直角三角形,

又∵是正方形外角的平分線,

,∴

,

2)探究2:小強(qiáng)繼續(xù)探索,如圖③,若把條件點(diǎn)E是邊BC的中點(diǎn)改為點(diǎn)E是邊BC上的任意一點(diǎn),其余條件不變,發(fā)現(xiàn)AE=EF仍然成立小強(qiáng)進(jìn)一步還想試試,如圖④,若把條件點(diǎn)E是邊BC的中點(diǎn)點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn),其余條件仍不變,那么結(jié)論AE=EF仍然成立請(qǐng)你選擇圖③或圖④中的一種情況寫出證明過程給小強(qiáng)看.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蟲從點(diǎn)A出發(fā)在一條直線上來回爬行,假定向右爬行的路程記為正數(shù),向左爬行的路程記為負(fù)數(shù),爬行的路程依次為:(單位:cm)①+5,②-3,③+10,④-8,⑤-6,⑥+11,⑦-9

1)小蟲最后是否回到出發(fā)點(diǎn)A,說明理由;

2)小蟲在第幾次爬行后離點(diǎn)A最遠(yuǎn),此時(shí)距離點(diǎn)A多少厘米?

3)在爬行過程中,如果每爬行1厘米獎(jiǎng)勵(lì)一粒芝麻,那么小蟲一共得到多少粒芝麻?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖中折線ABC表示從甲地向乙地打長(zhǎng)途電話時(shí)所需付的電話費(fèi)y(元)與通話時(shí)間t(分鐘)之間的關(guān)系圖象.

1)從圖象知,通話2分鐘需付的電話費(fèi)是   元;

2)當(dāng)t≥3時(shí)求出該圖象的解析式(寫出求解過程);

3)通話7分鐘需付的電話費(fèi)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某縣教育局為了豐富初中學(xué)生的大課間活動(dòng),要求各學(xué)校開展形式多樣的陽(yáng)光體育活動(dòng).某中學(xué)就學(xué)生體育活動(dòng)興趣愛好的問題,隨機(jī)調(diào)查了本校某班的學(xué)生,并根據(jù)調(diào)查結(jié)果繪制成如下的不完整的扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖:

1)在這次調(diào)查中,喜歡籃球項(xiàng)目的同學(xué)有   人,在扇形統(tǒng)計(jì)圖中,乒乓球的百分比為   %,如果學(xué)校有800名學(xué)生,估計(jì)全校學(xué)生中有   人喜歡籃球項(xiàng)目.

2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整.

3)在被調(diào)查的學(xué)生中,喜歡籃球的有2名女同學(xué),其余為男同學(xué).現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表班級(jí)參加校籃球隊(duì),請(qǐng)直接寫出所抽取的2名同學(xué)恰好是1名女同學(xué)和1名男同學(xué)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,AD∥BC,AB=CD,對(duì)角線CA平分∠BCD,AD=5,tanB= ,求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在 ABCD中,CD=2AD,BEAD于點(diǎn)E,F(xiàn)DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2ABF;EF=BF;S四邊形DEBC=2SEFB;④∠CFE=3DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC為直角三角形,∠C=90°,BC=2cm,A=30°,四邊形DEFG為矩形,DE=2cm,EF=6cm,且點(diǎn)C、B、E、F在同一條直線上,點(diǎn)B與點(diǎn)E重合.RtABC以每秒1cm的速度沿矩形DEFG的邊EF向右平移,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)停止.設(shè)RtABC與矩形DEFG的重疊部分的面積為ycm2,運(yùn)動(dòng)時(shí)間xs.能反映ycm2xs之間函數(shù)關(guān)系的大致圖象是( 。

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案