精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知AB是⊙P的直徑,點在⊙P上,為⊙P外一點,且∠ADC90°,直線為⊙P的切線.

試說明:2B+∠DAB180°

若∠B30°AD2,求⊙P的半徑.

【答案】(1)證明見解析;(2)4.

【解析】

1)根據切線的性質和圓周角定理,以及平行線的性質即可得到結論;

2)連接AC易證ACP是等邊三角形,得到ACD30°即可求出半徑.

解:連接CP

PCPB∴∠BPCB,

∴∠APCPCBB2∠B

CDOP的切線,∴∠DCP90°

∵∠ADC90°,∴∠DABAPC180°

∴2∠BDAB180°

連接AC

∵∠B30°,∴∠APC60°,

PCPA∴△ACP是等邊三角形,ACPA,ACP60°

∴∠ACD30°,AC2AD4,PA4

答:P的半徑為4.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點B向右旋轉90°至圖位置,再繞右下角的頂點繼續(xù)向右旋轉90°至圖位置,,以此類推,這樣連續(xù)旋轉2015次后,頂點A在整個旋轉過程中所經過的路程之和是( )

A.2015πB.3019C.3018πD.3024π

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知點A(1,a是反比例函數的圖象上一點,直線與反比例函數的圖象的交點為點B、D,B(3,﹣1),

(1)求反比例函數的解析式;

(2)求點D坐標,并直接寫出y1y2x的取值范圍;

(3)動點Px,0)x軸的正半軸上運動,當線段PA與線段PB之差達到最大時,求點P的坐標

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點的坐標分別為,,拋物線的頂點在折線上運動.

1)當點在線段上運動時,拋物線軸交點坐標為.

①用含的代數式表示.

②求的取值范圍.

2)當拋物線與的邊有三個公共點時,試求出點的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.

(1)以直線BC為軸,把△ABC旋轉一周,求所得圓錐的底面圓周長

(2)以直線AC為軸,把△ABC旋轉一周,求所得圓錐的側面積;

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知AB是⊙P的直徑,點在⊙P上,為⊙P外一點,且∠ADC90°,直線為⊙P的切線.

試說明:2B+∠DAB180°

若∠B30°,AD2,求⊙P的半徑.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀下面材料:

在數學課上,老師提出利用尺規(guī)作圖完成下面問題:

根據小蕓設計的尺規(guī)作圖過程,

(1)使用直尺和圓規(guī),補全圖形;(保留作圖痕跡)

(2)完成下面的證明:

證明:連接OAOB,OC

由作圖可知 OA=OB=OC )(填推理的依據)

∴⊙O為△ABC的外接圓;

∵點CP在⊙O上,

∴∠APB=ACB.( )(填推理的依據)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】1,菱形ABCD的頂點AD在直線上,∠BAD60°,以點A為旋轉中心將菱形ABCD順時針旋轉αα30°),得到菱形ABCDBC交對角線AC于點M,CD交直線l于點N,連接MN

1)當MNBD時,求α的大。

2)如圖2,對角線BDAC于點H,交直線l與點G,延長CBAB于點E,連接EH.當HEB的周長為2時,求菱形ABCD的周長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,△ABC內接于⊙O,BD為⊙O的直徑,∠BAC120°OABC、若AB4.

(1)求證:四邊形OACD為菱形.

(2)AD的長.

查看答案和解析>>

同步練習冊答案