【題目】如圖,在□ABCD中,BF平分∠ABC交AD于點(diǎn)F,AE⊥BF于點(diǎn)O,交BC于點(diǎn)E,連接EF.
(1)求證:四邊形ABEF是菱形;
(2)連接CF,若∠ABC=60°,AB= 4,AF =2DF,求CF的長.
【答案】(1)證明見解析(2)2
【解析】分析:(1)利用兩對邊分另相等的四邊形是平行四邊形,再根據(jù)鄰邊相等的平行四邊形是菱形即可證明;
(2)過點(diǎn)A作AG⊥BC于點(diǎn)G,利用等邊三角形的性質(zhì)、矩形的判定,含30度角的直角三角形即可求出CF的長.
詳解:(1)證明:∵BF平分∠ABC,
∴∠ABF=∠CBF,
∵□ABCD,
∴AD∥B,
∴∠AFB=∠CBF,
∴∠ABF=∠AFB,
∴AB=AF,
∵AE⊥BF,
∴∠ABF+∠BAO=∠CBF+∠BEO=90°,
∴∠BAO=∠BEO,
∴AB=BE,
∴AF=BE,
∴四邊形ABEF是平行四邊形,
∴□ABEF是菱形.
(2)解:∵AD=BC,AF=BE,
∴DF=CE,
∴BE=2CE,
∵AB=4,
∴BE=4,
∴CE=2,
過點(diǎn)A作AG⊥BC于點(diǎn)G,
∵∠ABC=60°,AB=BE,
∴△ABE是等邊三角形,
∴BG=GE=2,
∴AF=CG=4,
∴四邊形AGCF是平行四邊形,
∴□AGCF是矩形,
∴AG=CF,
在△ABG中,∠ABC=60°,AB=4,
∴AG=,
∴CF=,
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新定義:若∠α的度數(shù)是∠β的度數(shù)的n倍,則∠α叫做∠β的n倍角.
(1)若∠M=10°21′,請直接寫出∠M的3倍角的度數(shù);
(2)如圖1,若∠AOB=∠BOC=∠COD,請直接寫出圖中∠AOB的所有2倍角;
(3)如圖2,若∠AOC是∠AOB的3倍角,∠COD是∠AOB的4倍角,且∠BOD=90°,求∠BOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣3經(jīng)過點(diǎn)A(2,﹣3),與x軸負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=3OB.
(1)求拋物線的解析式;
(2)點(diǎn)D在y軸上,且∠BDO=∠BAC,求點(diǎn)D的坐標(biāo);
(3)點(diǎn)M在拋物線上,點(diǎn)N在拋物線的對稱軸上,是否存在以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出所有符合條件的點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,,.將矩形ABCD沿過點(diǎn)C的直線折疊,使點(diǎn)B落在對角線AC上的點(diǎn)E處,折痕交AB于點(diǎn)F.
(1)求線段AC的長.
(2)求線段EF的長.
(3)點(diǎn)G在線段CF上,在邊CD上存在點(diǎn)H,使以E、F、G、H為頂點(diǎn)的四邊形是平行四邊形,請畫出,并直接寫出線段DH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一個面積為1的正方形,經(jīng)過一次“生長”后,在他的左右肩上生出兩個小正方形,其中,三個正方形圍成的三角形是直角三角形,再經(jīng)過一次“生長”后,變成了下圖,如果繼續(xù)“生長”下去,它將變得“枝繁葉茂”,請你算出“生長”了2019次后形成的圖形中所有的正方形的面積和是( )
A.1B.2018C.2019D.2020
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在□ABCD中,E為BC的中點(diǎn),過點(diǎn)E作EF⊥AB于點(diǎn)F,延長DC,交FE的延長線于點(diǎn)G,連結(jié)DF,已知∠FDG=45°
(1)求證:GD=GF.
(2)已知BC=10, .求 CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個口袋中有4個完全相同的小球,把它們分別標(biāo)號1、2、3、4.小明先隨機(jī)地摸出一個小球,小強(qiáng)再隨機(jī)地摸出一個小球.記小明摸出球的標(biāo)號為x,小強(qiáng)摸出的球標(biāo)號為y.小明和小強(qiáng)在此基礎(chǔ)上共同協(xié)商一個游戲規(guī)則:當(dāng)x>y時小明獲勝。否則小強(qiáng)獲勝.
(1)若小明摸出的球不放回,求小明獲勝的概率;
(2)若小明摸出的球放回后小強(qiáng)再隨機(jī)摸球,問他們制定的游戲規(guī)則公平嗎?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上兩點(diǎn)相距個單位長度,機(jī)器人從點(diǎn)出發(fā)去點(diǎn),點(diǎn)在點(diǎn)右側(cè).規(guī)定向右為前進(jìn),第一次它前進(jìn)個單位長度,第二次它后退個單位長度,第三次再前進(jìn)個單位長度,第四次又后退個單位長度……按此規(guī)律行進(jìn),如果點(diǎn)在數(shù)軸上表示的數(shù)為,那么
(1)求出點(diǎn)在數(shù)軸上表示的數(shù).
(2)經(jīng)過第七次行進(jìn)后機(jī)器人到達(dá)點(diǎn),第八次行進(jìn)后到達(dá)點(diǎn),點(diǎn)到點(diǎn)的距離相等嗎?請說明理由.
(3)機(jī)器人在未到達(dá)點(diǎn)之前,經(jīng)過次(為正整數(shù))行進(jìn)后,它在數(shù)軸上表示的數(shù)應(yīng)如何用含的代數(shù)式表示?
(4)如果點(diǎn)在原點(diǎn)的右側(cè),那么機(jī)器人經(jīng)過次行進(jìn)后,它在點(diǎn)的什么位置?請通過計算說明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:求1+2+22+23+24+…+22019的值.
解:設(shè)S=1+2+22+23+24+…+22018+22019,①將等式兩邊同時乘2,得
2S=2+22+23+24+25+…+22019+22020,②
將②式減去①式,得2S-S=22020-1,
即S=22020-1,
則1+2+22+23+24+…+22019=22020-1.
請你仿照此法計算:
(1)1+2+22+23+24+…+210;
(2)1+3+32+33+34+…+3n(其中n為正整數(shù)).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com