【題目】如圖,⊙O中,直徑CD⊥弦ABE,AMBCM,交CDN,連AD.

(1)求證:AD=AN;

(2)若AE=,ON=1,求⊙O的半徑.

【答案】(1)證明見(jiàn)解析;(2)3;

【解析】

(1)先根據(jù)圓周角定理得出∠BAD=BCD,再由直角三角形的性質(zhì)得出∠ANE=CNM,故可得出∠BCD=BAM,由全等三角形的判定定理得出ANE≌△ADE,故可得出結(jié)論;

(2)先根據(jù)AE的長(zhǎng),設(shè)NE=x,則OE=x-1,NE=ED=x,r=OD=OE+ED=2x-1,連結(jié)AO,則AO=OD=2x-1,在RtAOE中根據(jù)勾股定理可得出x的值,進(jìn)而得出結(jié)論;

1)證明:∵∠BAD與∠BCD是同弧所對(duì)的圓周角,

∴∠BAD=BCD,

AECD,AMBC

∴∠AMC=AEN=90°,

∵∠ANE=CNM,

∴∠BCD=BAM,

∴∠BAM=BAD

在△ANE與△ADE中,

,

∴△ANE≌△ADE,

AD=AN

2)∵AE=2,AECD,

又∵ON=1

∴設(shè)NE=x,則OE=x-1NE=ED=x,

r=OD=OE+ED=2x-1

連結(jié)AO,則AO=OD=2x-1,

∵△AOE是直角三角形,AE=2,OE=x-1AO=2x-1,

∴(22+x-12=2x-12

解得x=2,

r=2x-1=3.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知ABC的三邊分別為a、bc,則下列條件中不能判定ABC是直角三角形的是(  )

A. b2=a2c2B. abc=12

C. C=A﹣∠BD. A:∠B:∠C=345

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=﹣2x24x+6

1)求出函數(shù)的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸以及描述該函數(shù)的增減性.

2)求拋物線(xiàn)與x軸交點(diǎn)和y軸交點(diǎn)坐標(biāo);并畫(huà)出它的大致圖象

3)當(dāng)2x4時(shí).求函數(shù)y的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線(xiàn)經(jīng)過(guò)點(diǎn)A0),B,0),且與y軸相交于點(diǎn)C

1求這條拋物線(xiàn)的表達(dá)式;

2)求∠ACB的度數(shù);

3設(shè)點(diǎn)D是所求拋物線(xiàn)第一象限上一點(diǎn),且在對(duì)稱(chēng)軸的右側(cè),點(diǎn)E在線(xiàn)段AC上,且DEAC,當(dāng)DCEAOC相似時(shí),求點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC在正方形網(wǎng)格中,若點(diǎn)A的坐標(biāo)為(0,3),按要求回答下列問(wèn)題:

1)在圖中建立正確的平面直角坐標(biāo)系;

2)直接寫(xiě)出ABC的面積;

3)畫(huà)出一個(gè)ACD,使得AD,CD,并寫(xiě)出點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線(xiàn)yx4x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)D為線(xiàn)段OB的中點(diǎn),點(diǎn)CP分別為線(xiàn)段AB、OA上的動(dòng)點(diǎn),當(dāng)PCPD值最小時(shí)點(diǎn)P的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖在直角坐標(biāo)平面內(nèi),拋物線(xiàn)y=ax2+bx﹣3與y軸交于點(diǎn)A,與x軸分別交于點(diǎn)B(﹣1,0)、點(diǎn)C(3,0),點(diǎn)D是拋物線(xiàn)的頂點(diǎn).

(1)求拋物線(xiàn)的表達(dá)式及頂點(diǎn)D的坐標(biāo);

(2)聯(lián)結(jié)AD、DC,求△ACD的面積;

(3)點(diǎn)P在直線(xiàn)DC上,聯(lián)結(jié)OP,若以O(shè)、P、C為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐

標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在探究“尺規(guī)三等分角”這個(gè)數(shù)學(xué)名題中,利用了如圖,該圖中,四邊形ABCD是矩形,線(xiàn)段AC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)得到線(xiàn)段AF,CF、BA的延長(zhǎng)線(xiàn)交于點(diǎn)E,若∠E=∠FAE,∠ACB=21°,則∠ECD的度數(shù)是( 。

A. B. 21° C. 23° D. 34°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明從家騎自行車(chē)出發(fā),沿一條直路到相距2400m的郵局辦事,小明出發(fā)的同時(shí),他的爸爸以96m/min速度從郵局同一條道路步行回家,小明在郵局停留2min后沿原路以原速返回,設(shè)他們出發(fā)后經(jīng)過(guò)t min時(shí),小明與家之間的距離為s1m,小明爸爸與家之間的距離為s2 m,圖中折線(xiàn)OABD、線(xiàn)段EF分別表示s1、s2t之間的函數(shù)關(guān)系的圖象。

1)求s2t之間的函數(shù)關(guān)系式;

2)小明從家出發(fā),經(jīng)過(guò)多長(zhǎng)時(shí)間在返回途中追上爸爸?這時(shí)他們距離家還有多遠(yuǎn)?

查看答案和解析>>

同步練習(xí)冊(cè)答案