精英家教網 > 初中數學 > 題目詳情

【題目】如圖1,2分別是某款籃球架的實物圖與示意圖,已知底座BC的長為0.60m,底座BC與支架AC所成的角∠ACB=75°,點A、HF在同一條直線上,支架AH段的長為1m,HF段的長為1.50m,籃板底部支架HE的長為0.75m

(1)求籃板底部支架HE與支架AF所成的角∠FHE的度數.

(2)求籃板頂端F到地面的距離.(結果精確到0.1 m;參考數據:cos75°≈0.2588,sin75°≈0.9659tan75°≈3.732,≈1.732,≈1.414)

【答案】(1)∠FHE=60°;(2)籃板頂端 F 到地面的距離是 4.4 米.

【解析】

(1)直接利用銳角三角函數關系得出cosFHE=,進而得出答案;

(2)延長FECB的延長線于M,過AAGFMG,解直角三角形即可得到結論.

(1 )由題意可得:cosFHE,則∠FHE=60°;

(2)延長 FE CB 的延長線于 M,過 A AGFM G,

RtABC 中,tanACB,

ABBCtan75°=0.60×3.732=2.2392,

GMAB=2.2392,

RtAGF 中,∵∠FAGFHE=60°,sinFAG

sin60°=,

FG≈2.17(m),

FMFG+GM≈4.4(米),

答:籃板頂端 F 到地面的距離是 4.4 米.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】已知二次函數的圖象如圖所示.下列結論:①;②;③;④其中正確的個數有(

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,雙曲線與直線相交于點(點在第一象限),其橫坐標為2.

1)求的值;

2)若兩個圖像在第三象限的交點為,則點的坐標為 ;

3)點為此反比例函數圖像上一點,其縱坐標為3,過點,交軸于點,直接寫出線段的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我市茶葉專賣店銷售某品牌茶葉,其進價為每千克 240 元,按每千克 400 元出售,平均每周可售出 200 千克,后來經過市場調查發(fā)現,單價每降低 10 元,則平均每周的銷售量可增加 40 千克,若該專賣店銷售這種品牌茶葉要想平均每周獲利 41600 元,請回答:

1)每千克茶葉應降價多少元?

2)在平均每周獲利不變的情況下,為盡可能讓利于顧客,贏得市場,該店應按原售價的 幾折出售?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標是(10,0),點CD在以OA為直徑的半圓上,點BOA上,且四邊形OCDB是菱形,則點C的坐標為_________

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD和平行四邊形BEFG,AB=AD,BG=BE,A、 B、 E在同一直線上,P是線段DF的中點,連接PG、PC,若∠ABC=BEF=60°,=( )

A.B.C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】問題提出:

1)如圖①,在邊長為8的等邊三角形ABC中,點D,E分別在BCAC上,且BD2,∠ADE60°,則線段CE的長為   

問題

2)如圖②,已知APBQ,∠A=∠B90°,AB6,D是射線AP上的一個動點(不與點A重合),E是線段AB上的一個動點(不與A,B重合),ECDE,交射線BQ于點C,且AD+DEAB,求BCE的周長.

問題解決:

3)如圖③,在四邊形ABCD中,AB+CD10ABCD),BC6,點EBC的中點,且∠AED108°,則邊AD的長是否存在最大值?若存在,請求AD的最大值,并求出此時AB,CD的長度,若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線l1y6x+6x軸、y軸分別交于AD兩點,直線l2y=﹣x+3x軸、y軸分別交于BC兩點.

1)在直線l2上找一點E,使|AEDE|的值最大,并求|AEDE|的最大值.

2)以AB為邊作矩形ABMN,點C在邊MN上,動點PB出發(fā),沿射線BM方向移動,作△PAB關于直線PA的對稱△PAB'.是否存在點P,使得△PMB'是直角三角形?若存在,請直接寫出所有符合題意的點P的坐標?若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,點DAB的中點,以CD為直徑作⊙O,⊙O分別與AC,BC交于點E,F,過點F⊙O的切線FG,交AB于點G,則FG的長為_____

查看答案和解析>>

同步練習冊答案