【題目】某大橋采用低塔斜拉橋橋型(如甲圖),圖乙是從圖甲引申出的平面圖,假設(shè)你站在橋上測(cè)得拉索AB與水平橋面的夾角是30°,拉索CD與水平橋面的夾角是60°,兩拉索頂端的距離BC為2米,兩拉索底端距離AD為20米,請(qǐng)求出立柱BH的長(zhǎng).(結(jié)果精確到0.1米, ≈1.73)
【答案】立柱BH的長(zhǎng)約為16.3米.
【解析】試題分析:設(shè)DH=x米,由三角函數(shù)得出CH=x,即可得BH=BC+CH=2+x,再求得AH=BH=2+3x,由AH=AD+DH得出方程2+3x=20+x,,解方程求出x,即可得出結(jié)果.
試題解析:設(shè)DH=x米,
∵∠CDH=60°,∠H=90°,
∴CH=DHsin60°=x,
∴BH=BC+CH=2+x,
∵∠A=30°,
∴AH=BH=2+3x,
∵AH=AD+DH,
∴2+3x=20+x,
解得:x=10﹣,
∴BH=2+(10﹣)=10﹣1≈16.3(米).
答:立柱BH的長(zhǎng)約為16.3米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為4,將長(zhǎng)為4的線段QR的 兩 端放在正方形的相鄰的兩邊上同時(shí)滑動(dòng).如果點(diǎn)Q從點(diǎn)A出發(fā),沿圖中所示方向按A→B→C→D→A滑動(dòng)到A止,同時(shí)點(diǎn)R從點(diǎn)B出發(fā),沿圖中所示方向按B→C→D→A→B滑動(dòng)到B止,在這個(gè)過(guò)程中,線段QR的中點(diǎn)M所經(jīng)過(guò)的路線圍成的圖形的面積為_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】將一個(gè)n邊形變成(n+2)邊形,內(nèi)角和將( )
A. 減少180B. 增加180°C. 減少360°D. 增加360°
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com