【題目】某興趣小組用高為1米的儀器測(cè)量建筑物CD的高度.如示意圖,由距CD一定距離的A處用儀器觀察建筑物頂部D的仰角為∠β=30,在A和C之間選一點(diǎn)B,由B處用儀器觀察建筑物頂部D的仰角為∠ɑ=60.測(cè)得A,B之間的距離為4米,建筑物CD的高度為______ .
【答案】
【解析】
設(shè)BC=x,即FG=x,EG=x+4,在Rt△DFG中, ∠DFG=60°,根據(jù)銳角∠DFG正切三角函數(shù)關(guān)系可表示DG= xtan∠DFG,即DG= xtan60°, 在Rt△DEG中, ∠DEG=30°,EG=4+x根據(jù)銳角∠DEG正切三角函數(shù)關(guān)系可表示DG= (x+4)tan∠DEG,即DG= (x+4)tan30°,可得xtan60°= (x+4)tan30°,解方程求出x,然后求出DG,最后即可求出DC.
解:設(shè)BC=x,
根據(jù)矩形性質(zhì)可得:
FG=x,EG=x+4,
在Rt△DFG中, ∠DFG=60°,
因?yàn)?/span>,
所以DG= xtan∠DFG,即DG= xtan60°,
在Rt△DEG中, ∠DEG=30°,EG=4+x,
因?yàn)?/span>,
所以DG= (x+4)tan∠DEG,即DG= (x+4)tan30°,
所以xtan60°= (x+4)tan30°,
,
,
,
所以DG= ,
所以DC=.
故答案為: .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(﹣1,0),點(diǎn)C(0,5),另拋物線經(jīng)過(guò)點(diǎn)(1,8),M為它的頂點(diǎn).
(1)求拋物線的解析式;
(2)求△MCB的面積.
(3)在坐標(biāo)軸上,是否存在點(diǎn)N,滿足△BCN為直角三角形?如存在,請(qǐng)直接寫(xiě)出所有滿足條件的點(diǎn)N.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某輪船以每小時(shí)30海里的速度向正東方向航行,上午8:00,測(cè)得小島C在輪船A的北偏東45°方向上;上午10:00,測(cè)得小島C在輪船B的北偏西30°方向上,則輪船在航行中離小島最近的距離約為__海里(精確到1海里,參考數(shù)據(jù)≈1.414,≈1.732).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形內(nèi)接于⊙,且.延長(zhǎng)至點(diǎn),使,連接.
(1)求證:平分;
(2)若,求證:是⊙的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為組織代表隊(duì)參加市“拜炎帝、誦經(jīng)典”吟誦大賽,初賽后對(duì)選手成績(jī)進(jìn)行了整理,分成5個(gè)小組(x表示成績(jī),單位:分),A組:75≤x<80;B組:80≤x<85;C組:85≤x<90;D組:90≤x<95;E組:95≤x<100.并繪制出如圖兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)參加初賽的選手共有 名,請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(2)扇形統(tǒng)計(jì)圖中,C組對(duì)應(yīng)的圓心角是多少度?E組人數(shù)占參賽選手的百分比是多少?
(3)學(xué)校準(zhǔn)備組成8人的代表隊(duì)參加市級(jí)決賽,E組6名選手直接進(jìn)入代表隊(duì),現(xiàn)要從D組中的兩名男生和兩名女生中,隨機(jī)選取兩名選手進(jìn)入代表隊(duì),請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法,求恰好選中一名男生和一名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀材料,我們給出如下定義:若一個(gè)四邊形中存在一組對(duì)邊的平方和等于另一組對(duì)邊的平方和,則稱這個(gè)四邊形為等平方和四邊形.
(1)寫(xiě)出一個(gè)你所學(xué)過(guò)的特殊四邊形中是等平方和四邊形的圖形的名稱: .
(2)如圖,在梯形ABCD中,AD∥BC,AC⊥BD,垂足為O.
求證:,即四邊形ABCD是等平方和四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某環(huán)保器材公司銷售一種市場(chǎng)需求較大的新型產(chǎn)品,已知每件產(chǎn)品的進(jìn)價(jià)為40元,經(jīng)銷過(guò)程中測(cè)出銷售量y(萬(wàn)件)與銷售單價(jià)x(元)存在如圖所示的一次函數(shù)關(guān)系,每年銷售該種產(chǎn)品的總開(kāi)支z(萬(wàn)元)(不含進(jìn)價(jià))與年銷量y(萬(wàn)件)存在函數(shù)關(guān)系z=10y+42.5.
(1)求y關(guān)于x的函數(shù)關(guān)系式;
(2)寫(xiě)出該公司銷售該種產(chǎn)品年獲利w(萬(wàn)元)關(guān)于銷售單價(jià)x(元)的函數(shù)關(guān)系式;(年獲利=年銷售總金額一年銷售產(chǎn)品的總進(jìn)價(jià)一年總開(kāi)支金額)當(dāng)銷售單價(jià)x為何值時(shí),年獲利最大?最大值是多少?
(3)若公司希望該產(chǎn)品一年的銷售獲利不低于57.5萬(wàn)元,請(qǐng)你利用(2)小題中的函數(shù)圖象幫助該公司確定這種產(chǎn)品的銷售單價(jià)的范圍.在此條件下要使產(chǎn)品的銷售量最大,你認(rèn)為銷售單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護(hù)人員支援湖北武漢抗擊疫情.
(1)若從甲、乙兩醫(yī)院支援的醫(yī)護(hù)人員中分別隨機(jī)選1名,則所選的2名醫(yī)護(hù)人員性別相同的概率是 ;
(2)若從支援的4名醫(yī)護(hù)人員中隨機(jī)選2名,用列表或畫(huà)樹(shù)狀圖的方法求出這2名醫(yī)護(hù)人員來(lái)自同一所醫(yī)院的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一方有難,八方支援.“新冠肺炎”疫情來(lái)襲,除了醫(yī)務(wù)人員主動(dòng)請(qǐng)纓逆行走向戰(zhàn)場(chǎng)外,眾多企業(yè)也伸出援助之手.某公司用甲,乙兩種貨車(chē)向武漢運(yùn)送愛(ài)心物資,兩次滿載的運(yùn)輸情況如下表:
甲種貨車(chē)輛數(shù) | 乙種貨車(chē)輛數(shù) | 合計(jì)運(yùn)物資噸數(shù) | |
第一次 | 3 | 4 | 29 |
第二次 | 2 | 6 | 31 |
(1)求甲、乙兩種貨車(chē)每次滿載分別能運(yùn)輸多少噸物資;
(2)目前有46.4噸物資要運(yùn)輸?shù)轿錆h,該公司擬安排甲乙貨車(chē)共10輛,全部物資一次運(yùn)完,其中每輛甲車(chē)一次運(yùn)送花費(fèi)500元,每輛乙車(chē)一次運(yùn)送花費(fèi)300元,請(qǐng)問(wèn)該公司應(yīng)如何安排車(chē)輛最節(jié)省費(fèi)用?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com