【題目】將一根24cm的筷子置于底面直徑為15cm,高為8cm的圓柱形水杯中,設筷子露在杯子外面的長度為hcm,則h的取值范圍是( )

A. h≤17 B. h≥8 C. 15≤h≤16 D. 7≤h≤16

【答案】D

【解析】

當筷子的底端在A點時,筷子露在杯子外面的長度最短;當筷子的底端在D點時,筷子露在杯子外面的長度最長.然后分別利用已知條件根據(jù)勾股定理即可求出h的取值范圍.

解:如圖,當筷子的底端在D點時,筷子露在杯子外面的長度最長,

∴h=248=16(cm);

當筷子的底端在A點時,筷子露在杯子外面的長度最短,

Rt△ABD中,AD=15cm,BD=8cm,

∴AB===17(cm),

∴此時h=2417=7(cm),

所以h的取值范圍是:7cmh16cm.

故選D.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩名射手在相同條件下打靶,射中的環(huán)數(shù)如圖所示,利用圖中提供的信息,解答下列問題:

(1)分別求甲、乙兩名射手中環(huán)數(shù)的眾數(shù)和平均數(shù);

(2)如果從甲、乙兩名射手中選一名去參加射擊比賽,你選誰去?為什么?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商家用1200元購進了一批T恤,上市后很快售完,商家又用2800元購進了第二批這種T恤,所購數(shù)量是第一批購進量的2倍,但單價貴了5元.

(1)該商家購進的第一批T恤是多少件?

(2)若兩批T恤按相同的標價銷售,最后剩下20件按八折優(yōu)惠賣出,如果希望兩批T恤全部售完的利潤率不低于16%(不考慮其它因素),那么每件T恤的標價至少是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們已經(jīng)學習過反比例函數(shù)y= 的圖象和性質(zhì),請回顧研究它的過程,對函數(shù)y= 進行探索.下列結(jié)論:
①圖象在第一、二象限,②圖象在第一、三象限,
③圖象關(guān)于y軸對稱,④圖象關(guān)于原點對稱,
⑤當x>0時,y隨x增大而增大;當x<0時,y隨x增大而增大,
⑥當x>0時,y隨x增大而減小;當x<0時,y隨x增大而增大,
是函數(shù)y= 的性質(zhì)及它的圖象特征的是: . (填寫所有正確答案的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ADBC,ABCD,AC,BD交于O點,過O點的直線EFADE點,交BCF點,且BF=DE,則圖中的全等三角形共有(  )

A. 6 B. 5 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知a、b、c滿足(a﹣7.5)2++|c﹣8.5|=0.求:

(1)a、b、c的值;

(2)求以a、b、c為邊構(gòu)成的三角形面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小明和小月兩家位于A,B兩處隔河相望,要測得兩家之間的距離,小明設計方案如下:

①從點A出發(fā)沿河岸畫一條射線AM;

②在射線AM上截取AF=FE;

③過點EECAB,使B,F(xiàn),C在一條直線上;

CE的長就是A,B間的距離.

(1)請你說明小明設計的原理.

(2)如果不借助測量儀,小明的設計中哪一步難以實現(xiàn)?

(3)你能設計出更好的方案嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC,∠C=90°,BE平分∠ABC,AC邊于點E,ED⊥AB,垂足為D.若△ABC的周長為12,△ADE的周長為6,BC的長為( )

A. 3 B. 4 C. 5 D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,從下列條件中補充一個條件后,仍不能判定的是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案