【題目】一天晚上,小穎由路燈A下的B處向正東走到C處時(shí),測得影子CD的長為1米.當(dāng)她繼續(xù)向正東走到D處時(shí),測得此時(shí)影子DE的一端E到路燈A的仰角為45°.已知小穎的身高為1.5米,那么路燈AB的高度是多少米?( )
A.4米B.4.5米C.5米D.6米
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于的一元二次方程:.
(1)求證:對于任意實(shí)數(shù),方程都有實(shí)數(shù)根;
(2)當(dāng)為何值時(shí),方程的兩個根互為相反數(shù)?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)大致的圖象如圖,關(guān)于該二次函數(shù),下列說法錯誤的是( 。
A. 函數(shù)有最大值
B. 對稱軸是直線x=
C. 當(dāng)x<時(shí),y隨x的增大而減小
D. 當(dāng)時(shí)﹣1<x<2時(shí),y>0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有且僅有一組對角相等的凸四邊形叫做“準(zhǔn)平行四邊形”.例如:凸四邊形中,若,則稱四邊形為準(zhǔn)平行四邊形.
(1)如圖①,是上的四個點(diǎn),,延長到,使.求證:四邊形是準(zhǔn)平行四邊形;
(2)如圖②,準(zhǔn)平行四邊形內(nèi)接于,,若的半徑為,求的長;
(3)如圖③,在中,,若四邊形是準(zhǔn)平行四邊形,且,請直接寫出長的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與反比例函數(shù)在第一象限內(nèi)的圖象相交于點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)將直線向上平移后與反比例函數(shù)圖象在第一象限內(nèi)交于點(diǎn),與軸交于點(diǎn),且的面積為,求直線的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在Rt△ACB中,∠C=90°,BC=3cm,AC=3cm,點(diǎn)P由B點(diǎn)出發(fā)沿BA方向向點(diǎn)A勻速運(yùn)動,速度為2cm/s;點(diǎn)Q由A點(diǎn)出發(fā)沿AC方向向點(diǎn)C勻速運(yùn)動,速度為cm/s;若設(shè)運(yùn)動的時(shí)間為t(s)(0<t<3),解答下列問題:
(1)如圖①,連接PC,當(dāng)t為何值時(shí)△APC∽△ACB,并說明理由;
(2)如圖②,當(dāng)點(diǎn)P,Q運(yùn)動時(shí),是否存在某一時(shí)刻t,使得點(diǎn)P在線段QC的垂直平分線上,請說明理由;
(3)如圖③,當(dāng)點(diǎn)P,Q運(yùn)動時(shí),線段BC上是否存在一點(diǎn)G,使得四邊形PQGB為菱形?若存在,試求出BG長;若不存在請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某車間準(zhǔn)備采取每月任務(wù)定額,超產(chǎn)有獎的措施提高工作效率,為制定一個恰當(dāng)?shù)纳a(chǎn)定額,從該車間200名工人中隨機(jī)抽取20人統(tǒng)計(jì)其某月產(chǎn)量如下:
每人生產(chǎn)零件數(shù) | 260 | 270 | 280 | 290 | 300 | 310 | 350 | 520 |
人 數(shù) | 1 | 1 | 5 | 4 | 3 | 4 | 1 | 1 |
(1)請應(yīng)用所學(xué)的統(tǒng)計(jì)知識.為制定生產(chǎn)定額的管理者提供有用的參考數(shù)據(jù);
(2)你認(rèn)為管理者將每月每人的生產(chǎn)定額定為多少最合適?為什么?
(3)估計(jì)該車間全年可生產(chǎn)零件多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù) y=ax2+bx+c 的圖象與 x 軸的交點(diǎn)的橫坐標(biāo)分別為-1,3,則:
①ac<0;②2a+b=0;③4a+2b+c>0;④對于任意 x 均有 ax2+bx≥a+b,其中結(jié)論正確的個數(shù)有( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的部分圖象如圖,則下列說法:①abc>0;②b+2a=0;③b2>4ac;④a+b+c<﹣3,正確的是( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com