【題目】課前預(yù)習(xí)是學(xué)習(xí)數(shù)學(xué)的重要環(huán)節(jié),為了了解所教班級(jí)學(xué)生完成數(shù)學(xué)課前預(yù)習(xí)的具體情況,王老師對(duì)本班部分學(xué)生進(jìn)行了為期半個(gè)月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類,A:很好;B:較好;C:一般;D:較差.并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖解答下列問(wèn)題:
(1)王老師一共調(diào)查了多少名同學(xué)?
(2)C類女生有 名,D類男生有 名,將上面條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)為了共同進(jìn)步,王老師想從被調(diào)查的A類和D類學(xué)生中各隨機(jī)選取一位同學(xué)進(jìn)行“一幫一”互助學(xué)習(xí),請(qǐng)用列表法或畫(huà)樹(shù)形圖的方法求出所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的概率.
【答案】(1)20;(2)見(jiàn)解析(3)
【解析】
試題分析:(1)根據(jù)B類有6+4=10人,所占的比例是50%,據(jù)此即可求得總?cè)藬?shù);
(2)利用(1)中求得的總?cè)藬?shù)乘以對(duì)應(yīng)的比例即可求得C類的人數(shù),然后求得C類中女生人數(shù),同理求得D類男生的人數(shù);
(3)利用列舉法即可表示出各種情況,然后利用概率公式即可求解.
試題解析:(1)(6+4)÷50%=20.
所以王老師一共調(diào)查了20名學(xué)生.
(2)C類學(xué)生人數(shù):20×25%=5(名)
C類女生人數(shù):5﹣2=3(名),
D類學(xué)生占的百分比:1﹣15%﹣50%﹣25%=10%,
D類學(xué)生人數(shù):20×10%=2(名),
D類男生人數(shù):2﹣1=1(名),
故C類女生有3名,D類男生有1名;補(bǔ)充條形統(tǒng)計(jì)圖
.
(3)由題意畫(huà)樹(shù)形圖如下:
從樹(shù)形圖看出,所有可能出現(xiàn)的結(jié)果共有6種,且每種結(jié)果出現(xiàn)的可能性相等,所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué)的結(jié)果共有3種.所以P(所選兩位同學(xué)恰好是一位男同學(xué)和一位女同學(xué))==.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若三條線段的比是①1:4:6;②1:2:3,;③3:3:6;④6:6:10;⑤3:4:5;其中可構(gòu)成三角形的有( 。
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】要用一根鐵絲圍成一個(gè)面積為120 cm2的長(zhǎng)方形,并使長(zhǎng)比寬多2 cm,則長(zhǎng)方形的長(zhǎng)是______cm.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,已知∠C=90°,∠A=60°,AC=3cm,以斜邊AB的中點(diǎn)P為旋轉(zhuǎn)中心,把這個(gè)三角形按逆時(shí)針?lè)较蛐D(zhuǎn)90°得到Rt△A′B′C′,則旋轉(zhuǎn)前后兩個(gè)直角三角形重疊部分的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下列計(jì)算中,不能用平方差公式計(jì)算的是( )
A. (m-n)(-m+n) B. (x3-y3)(x3+y3)
C. (-a-b)(a-b) D. (c2–d2)(d2+c2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,4),B(4,2),C(3,5)(每個(gè)方格的邊長(zhǎng)均為1個(gè)單位長(zhǎng)度).
(1)請(qǐng)畫(huà)出△A1B1C1,使△A1B1C1與△ABC關(guān)于x軸對(duì)稱;
(2)將△ABC繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△A2B2C2,并直接寫(xiě)出點(diǎn)B旋轉(zhuǎn)到點(diǎn)B2所經(jīng)過(guò)的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,∠BAD的平分線交直線BC于E,交直線DC于F。
(1)在圖1中證明CE=CF;
(2)若∠ABC=90°,G是EF的中點(diǎn)(如圖2),討論線段DG與BD的數(shù)量關(guān)系。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com