【題目】如圖,一次函數(shù)y=x+3的圖象分別與y軸,x軸交于點(diǎn)A,B,點(diǎn)P從點(diǎn)B出發(fā),沿射線BA以每秒1個(gè)單位的速度運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒.
(1)點(diǎn)P在運(yùn)動(dòng)過程中,若某一時(shí)刻,△OPA的面積為3,求此時(shí)P的坐標(biāo);
(2)在整個(gè)運(yùn)動(dòng)過程中,當(dāng)t為何值時(shí),△AOP為等腰三角形?請(qǐng)直接寫出t的值.
【答案】(1)點(diǎn)P的坐標(biāo)為(﹣2,)或(2,);(2)當(dāng)t的值為2、8、和時(shí),△AOP為等腰三角形.
【解析】
(1)根據(jù)坐標(biāo)軸上點(diǎn)的坐標(biāo)特征可求得A、B的坐標(biāo),用m表示出點(diǎn)P的坐標(biāo),利用面積可求得m的值,進(jìn)一步求得P點(diǎn)坐標(biāo);
(2)可用t表示出BP、AP的長,分AP=AO、AP=OP和OP=AO三種情況,分別得到關(guān)于t的方程,可求得t的值.
(1)當(dāng)x=0時(shí),y=3,
當(dāng)y=0時(shí),x=4,
則A(0,3),B(4,0),
∴AO=3,BO=4,
設(shè)點(diǎn)P的坐標(biāo)為(m,m+3),
∵△OPA的面積為3,
∴×3×|m|=3,
解得:m=±2,
∴點(diǎn)P的坐標(biāo)為(﹣2,)或(2,).
(2)∵AO=3,BO=4,
∴AB=,
由題意可知BP=t,AP=5﹣t,
當(dāng)△AOP為等腰三角形時(shí),有AP=AO、AP=OP和AO=OP三種情況.
①當(dāng)AP=AO時(shí),則有5﹣t=3,解得t=2;或t﹣5=3,解得t=8;
②當(dāng)AP=OP時(shí),過P作PM⊥AO,垂足為M,如圖1,
則M為AO中點(diǎn),故P為AB中點(diǎn),此時(shí)t=;
③當(dāng)AO=OP時(shí),過O作ON⊥AB,垂足為N,過P作PH⊥OB,垂足為H,如圖2,
則NP=AN=AP=(5﹣t),
∵S△AOB=,
∴ON=,
∵,
∴,
∴t=,
綜上可知當(dāng)t的值為2、8、和時(shí),△AOP為等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是⊙O的直徑,點(diǎn)B,D在⊙O上,點(diǎn)E在⊙O外,∠EAB=∠D=30°.
(1)∠C的度數(shù)為 ;
(2)求證:AE是⊙O的切線;
(3)當(dāng)AB=3時(shí),求圖中陰影部分的面積(結(jié)果保留根號(hào)和π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A,B兩點(diǎn)(A在B的左側(cè)),其中點(diǎn)B(3,0),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)將拋物線向下平移h個(gè)單位長度,使平移后所得拋物線的頂點(diǎn)落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設(shè)點(diǎn)P是拋物線上且在x軸上方的任一點(diǎn),點(diǎn)Q在直線l:x=﹣3上,△PBQ能否成為以點(diǎn)P為直角頂點(diǎn)的等腰直角三角形?若能,求出符合條件的點(diǎn)P的坐標(biāo);若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰的頂角的度數(shù)是,點(diǎn)是腰的黃金分割點(diǎn),將繞著點(diǎn)按照順時(shí)針方向旋轉(zhuǎn)一個(gè)角度后點(diǎn)落在點(diǎn)處,聯(lián)結(jié),當(dāng)時(shí),這個(gè)旋轉(zhuǎn)角是________度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司欲將件產(chǎn)品全部運(yùn)往甲,乙,丙三地銷售(每地均有產(chǎn)品銷售),運(yùn)費(fèi)分別為40元/件,24元/件,7元/件,且要求運(yùn)往乙地的件數(shù)是運(yùn)往甲地件數(shù)的3倍,設(shè)安排(為正整數(shù))件產(chǎn)品運(yùn)往甲地.
(1)根據(jù)信息填表:
甲地 | 乙地 | 丙地 | |
產(chǎn)品件數(shù)(件) | |||
運(yùn)費(fèi)(元) |
(2)若總運(yùn)費(fèi)為6300元,求與的函數(shù)關(guān)系式并求出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用28m長的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm.若在P處有一棵樹與墻CD,AD的距離分別是15m和6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),則花園面積S的最大值為_____m2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC的三個(gè)頂點(diǎn)在格點(diǎn)上.
(1)作出與△ABC關(guān)于x軸對(duì)稱的圖形△A1B1C1;
(2)求出A1,B1,C1三點(diǎn)坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx-3與軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè)),A(-1,0),B(3,0),直線與拋物線交于,兩點(diǎn),其中點(diǎn)的橫坐標(biāo)為。
(1)求拋物線的函數(shù)解析式;
(2)是線段上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的平行線交拋物線于點(diǎn),求線段長度的最大值;
(3)點(diǎn)是拋物線上的動(dòng)點(diǎn),在軸上是否存在點(diǎn),使,,,這樣的四個(gè)點(diǎn)為頂點(diǎn)的四邊形是平行四邊形?如果存在,求出所有滿足條件的點(diǎn)坐標(biāo);如果不存在,請(qǐng)說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com