【題目】某公司欲將件產(chǎn)品全部運往甲,乙,丙三地銷售(每地均有產(chǎn)品銷售),運費分別為40元/件,24元/件,7元/件,且要求運往乙地的件數(shù)是運往甲地件數(shù)的3倍,設(shè)安排(為正整數(shù))件產(chǎn)品運往甲地.
(1)根據(jù)信息填表:
甲地 | 乙地 | 丙地 | |
產(chǎn)品件數(shù)(件) | |||
運費(元) |
(2)若總運費為6300元,求與的函數(shù)關(guān)系式并求出的最小值.
【答案】(1)見解析;(2);當(dāng)時,取得最小值,.
【解析】
(1)根據(jù)總產(chǎn)品件數(shù)為m,可求得運往丙地的產(chǎn)品件數(shù);然后根據(jù)運費=產(chǎn)品件數(shù)×運費單價可得出運往乙地、丙地的運費;
(2)根據(jù)總運費列出算式并用x表示出m,再根據(jù)m不小于運往甲、乙兩地的件數(shù)和求出x的取值范圍,然后根據(jù)一次函數(shù)的增減性求出m的最小值即可.
解:(1)表格如下:
甲地 | 乙地 | 丙地 | |
產(chǎn)品件數(shù)(件) | |||
運費(元) |
(2)由題意得:,
化簡得:,
∴.
∵,
∴,
∴.
∵為正整數(shù),-12<0,
∴m隨x的增大而減小,
∴當(dāng)時,取得最小值,此時.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在平面直角坐標(biāo)系中,點P(0,2),以P為圓心,OP為半徑的半圓與y軸的另一個交點是C,一次函數(shù)(m為實數(shù))的圖象為直線l,l分別交x軸,y軸于A,B兩點,如圖1.
(1)B點坐標(biāo)是 (用含m的代數(shù)式表示),∠ABO= °.
(2)若點N是直線AB與半圓CO的一個公共點(兩個公共點時,N為右側(cè)一點),過點N作⊙P的切線交x軸于點E,如圖2.是否存在這樣的m的值,使得△EBN是直角三角形.若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明遇到這樣一個問題:如圖,矩形紙片ABCD,AB=2,BC=3,現(xiàn)要求將矩形紙片剪兩刀后拼成一個與之面積相等的正方形,小明嘗試給出了下面四種剪的方法,如圖①②③④,圖中BE=.其中剪法正確的是( 。
A.①②B.①③C.②③D.③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+3的圖象分別與y軸,x軸交于點A,B,點P從點B出發(fā),沿射線BA以每秒1個單位的速度運動,設(shè)點P的運動時間為t秒.
(1)點P在運動過程中,若某一時刻,△OPA的面積為3,求此時P的坐標(biāo);
(2)在整個運動過程中,當(dāng)t為何值時,△AOP為等腰三角形?請直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是拋物線形拱橋,當(dāng)拱頂離水面2m時,水面寬4m,則水面下降1m時,水面寬度增加( 。﹎.
A. 1 B. 2 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線y=﹣x+3與x軸、y軸分別交于A、C,以OA、OC為邊在第一象限內(nèi)作長方形OABC.
(1)將△ABC沿B′D對折,使得點A與點C重合,折痕交AB于點D,求直線CD的解析式;
(2)若在x軸上存在點P,使△ADP為等腰三角形,求出符合條件的點P坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是三種電話計費方式:
月使用費 (元) | 主叫限定時間 (分鐘) | 主叫超時收費 (元/分鐘) | 被叫 | |
方式一 | 18 | 60 | 0.2 | 免費 |
方式二 | 28 | 120 | 0.2 | 免費 |
方式三 | 48 | 240 | 0.2 | 免費 |
說明:月使用費固定收取,主叫不超限定時間不再收費,主叫超時部分加收超時費.
設(shè)一個月內(nèi)主叫通話分鐘(為正整數(shù)).
(1)當(dāng)時,按方式一計費為______元;按方式二計費為______元.
(2)當(dāng)時,是否存在某一時間,使方式二與方式三的計費結(jié)果相等?若存在,請求出對應(yīng)的值,若不存在,請說明理由.
(3)當(dāng)時,哪一種收費方式最省錢?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若一個矩形的短邊與長邊的比值為(黃金分割數(shù)),我們把這樣的矩形叫做黃金矩形.
操作:請你在如圖所示的黃金矩形中,以短邊為一邊作正方形;
探究:在中的四邊形是不是黃金矩形?若是,請予以證明;若不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com