【題目】如圖在平面直角坐標系xoy中,直線y=2x+4與y軸交于A點,與x軸交于B點,拋物線C1:y=-x+bx+c過A、B兩點,與x軸另一交點為C。
(1)求拋物線解析式及C點坐標。
(2)向右平移拋物線C1,使平移后的拋物線C2恰好經(jīng)過△ABC的外心,拋物線C1、C2相交于點D,求四邊形AOCD的面積。
(3)已知拋物線C2的頂點為M,設P為拋物線C1對稱軸上一點,Q為拋物線C1上一點,是否存在以點M、Q、P、B為頂點的四邊形為平行四邊形,若存在,直接寫出P點坐標,不存在,請說明理由。
【答案】(1) y=- x+x+4,C(8,0);(2);(3)存在,點P的坐標為(3,0)或(3,-)或(3,-25)).
【解析】
試題分析:(1)在y=2x+4中,令x=0,可得y=4,則點A的坐標為A(0,4);令y=0,可得x=-2,則點B的坐標為(-2,0);因為拋物線C1:y=-x+bx+c過A、B兩點,故將A(0,4),B(-2,0)代入y=-x+bx+c,聯(lián)立方程組,求解b,c的值即可求得拋物線解析式y(tǒng)=- x+x+4,再令- x+x+4=0,即可得C點坐標;(2)先證明△ABC是直角三角形,得△ABC的斜邊BC的中點為(3,0)即E點坐標為(3,0) ,由平移可得F點坐標為F (13,0),從而得出拋物線C的解析式,再將C1、C聯(lián)立方程組解出x,y的值,最后根據(jù)S四邊形AOCD= S三角形AOD+S三角形 OCD即可得出四邊形AOCD的面積;(3)分情況討論可能的情形即可得出結(jié)論.
試題解析:(1)∵直線y=2x+4與y軸交于A點,與x軸交于B點,
∴令x=0,可得y=4,則點A的坐標為A(0,4);
令y=0,可得x=-2,則點B的坐標為(-2,0);
將A(0,4),B(-2,0)代入y=-x+bx+c,聯(lián)立方程組,
解得,b=, c=4
∴拋物線C的解析式為: y=- x+x+4
∵拋物線C1:y=-x+bx+c與x軸交于點C
令- x+x+4=0,
解得,x=8
∴C點坐標為C(8,0)
(2)如圖,
由(1)知,C(8,0),A(0,4),B (-2,0)
∴AC2=AO2+OC2=42+82=80,
AB2= AO2+OB2=42+22=20,
又BC=BO+OC=8+2=10,∴BC2= 102=100
∴BC2= AC2+AB2,
∴△ABC是直角三角形.
△ABC的斜邊BC的中點為(8+2)÷2=5
∴OE=5-OB=5-2=3
∴△ABC的斜邊BC的中點為(3,0)
∵拋物線C2恰好經(jīng)過△ABC的外心,
∴ E為△ABC的外心,E點坐標為(3,0)
∴F點坐標為(3+8+2,0),即F(13,0)
由E (3,0) ,F(xiàn)(13,0)得拋物線C∶y= - (x-3 ) (x-13 )
即C∶y= -x+4x-
聯(lián)立方程組
解得 x= y=
∴S四邊形AOCD= S三角形AOD+S三角形 OCD
=×4×+×8×=
答:四邊形AOCD的面積為.
(3)分情況討論如下:
①BM為對角線時,中點在直線x=3上,Q(3,)
所以P(3,0)
②當四邊形PQBM為平行四邊形時PQ∥MB, Q(-7,-),
所以P(3,-)
③當四邊形PQMB為平行四邊形時PQ∥BM,Q(13,-),
所以P(3,-25)
科目:初中數(shù)學 來源: 題型:
【題目】一個樣本有50個數(shù)據(jù),其中最大值是208,最小值是169,最大值與最小值的差是______;如果取組距為5,那么這組數(shù)據(jù)應分成______組,第一組的起點為________,第二組與第一組的分點為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線MN與直線AB、CD分別交于點E、F,∠1與∠2互補.
(1)試判斷直線AB與直線CD的位置關(guān)系,并說明理由;
(2)如圖2,∠BEF與∠EFD的角平分線交于點P,EP與CD交于點G,點H是MN上一點,且GH⊥EG,求證:PF∥GH;
(3)如圖3,在(2)的條件下,連接PH,K是GH上一點使∠PHK=∠HPK,作PQ平分∠EPK,問∠HPQ的大小是否發(fā)生變化?若不變,請求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某賓館有50個房間供游客居住,當每個房間定價120元時,房間會全部住滿,當每個房間每天的定價每增加10元時,就會有一個房間空閑。如果游客居住房間,賓館需對每個房間每天支出20元的各種費用,設每個房間定價增加10 x元(x為整數(shù))。
(1)(2分)直接寫出每天游客居住的房間數(shù)量y與x的函數(shù)關(guān)系式。
(2)(4分)設賓館每天的利潤為W元,當每間房價定價為多少元時,賓館每天所獲利潤最大,最大利潤是多少?
(3)(4分)某日,賓館了解當天的住宿的情況,得到以下信息:①當日所獲利潤不低于5000元,②賓館為游客居住的房間共支出費用沒有超過600元,③每個房間剛好住滿2人。問:這天賓館入住的游客人數(shù)最少有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】合并同類項解方程:一般是把方程左邊含未知數(shù)的項合并,把右邊的常數(shù)項合并,從而把方程化簡為________(a≠0,a、b是常數(shù))的形式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com